Abstract

Li metal batteries (LMBs) are one of the most promising high-energy-density batteries. However, solid electrolyte interphase (SEI) and Li dendrite substantially form in LMBs. Due to low ionic conductivity, inhomogeneity, and poor mechanical and electrochemical stability of native SEI, dendritic Li nucleates and grows, which in turn induces the fracture of SEI and promotes the formation of new SEI, causing the loss of active materials and safety issues for LMBs. Understanding the SEI–dendrite interactions could play a critical role in developing LMBs. For instance, modified SEI has been demonstrated to suppress dendrite growth and improve battery performance. In this short review, we discuss the underlying mechanisms of SEI–dendrite interactions and strategies for improving battery cycling performance.

References

1.
Grande
,
L.
,
Paillard
,
E.
,
Hassoun
,
J.
,
Park
,
J. B.
,
Lee
,
Y. J.
,
Sun
,
Y. K.
,
Passerini
,
S.
, and
Scrosati
,
B.
,
2015
, “
The Lithium/Air Battery: Still an Emerging System or a Practical Reality?
,”
Adv. Mater.
,
27
(
5
), pp.
784
800
.
2.
Lu
,
Y.
,
Tikekar
,
M.
,
Mohanty
,
R.
,
Hendrickson
,
K.
,
Ma
,
L.
, and
Archer
,
L. A.
,
2015
, “
Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes
,”
Adv. Energy Mater.
,
5
(
9
), p.
1402073
.
3.
Xu
,
W.
,
Wang
,
J.
,
Ding
,
F.
,
Chen
,
X.
,
Nasybulin
,
E.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2014
, “
Lithium Metal Anodes for Rechargeable Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
513
537
.
4.
Cheng
,
X.-B.
, and
Zhang
,
Q.
,
2015
, “
Dendrite-Free Lithium Metal Anodes: Stable Solid Electrolyte Interphases for High-Efficiency Batteries
,”
J. Mater. Chem. A
,
3
(
14
), pp.
7207
7209
.
5.
Sun
,
Y.
,
Liu
,
N.
, and
Cui
,
Y.
,
2016
, “
Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries
,”
Nat. Energy
,
1
(
7
), p.
16071
.
6.
Tikekar
,
M. D.
,
Choudhury
,
S.
,
Tu
,
Z.
, and
Archer
,
L. A.
,
2016
, “
Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries
,”
Nat. Energy
,
1
(
9
), p.
16114
.
7.
Xie
,
J.
,
Wang
,
J.
,
Lee
,
H. R.
,
Yan
,
K.
,
Li
,
Y.
,
Shi
,
F.
,
Huang
,
W.
,
Pei
,
A.
,
Chen
,
G.
, and
Subbaraman
,
R.
,
2018
, “
Engineering Stable Interfaces for Three-Dimensional Lithium Metal Anodes
,”
Sci. Adv.
,
4
(
7
), p.
eaat5168
.
8.
Xu
,
X.
,
Wang
,
S.
,
Wang
,
H.
,
Hu
,
C.
,
Jin
,
Y.
,
Liu
,
J.
, and
Yan
,
H.
,
2018
, “
Recent Progresses in the Suppression Method Based on the Growth Mechanism of Lithium Dendrite
,”
J. Energy Chem.
,
27
(
2
), pp.
513
527
.
9.
Cheng
,
X. B.
,
Zhang
,
R.
,
Zhao
,
C. Z.
, and
Zhang
,
Q.
,
2017
, “
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
,”
Chem. Rev.
,
117
(
15
), pp.
10403
10473
.
10.
Fang
,
C.
,
Li
,
J.
,
Zhang
,
M.
,
Zhang
,
Y.
,
Yang
,
F.
,
Lee
,
J. Z.
,
Lee
,
M. H.
, et al
,
2019
, “
Quantifying Inactive Lithium in Lithium Metal Batteries
,”
Nature
,
572
(
7770
), pp.
511
515
.
11.
Dornbusch
,
D. A.
,
Hilton
,
R.
,
Lohman
,
S. D.
, and
Suppes
,
G. J.
,
2014
, “
Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries
,”
J. Electrochem. Soc.
,
162
(
3
), pp.
A262
A268
.
12.
Li
,
W.
,
Zheng
,
H.
,
Chu
,
G.
,
Luo
,
F.
,
Zheng
,
J.
,
Xiao
,
D.
,
Li
,
X.
, et al
,
2014
, “
Effect of Electrochemical Dissolution and Deposition Order on Lithium Dendrite Formation: A Top View Investigation
,”
Faraday Discuss.
,
176
, pp.
109
124
.
13.
Cohen
,
Y. S.
,
Cohen
,
Y.
, and
Aurbach
,
D.
,
2000
, “
Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using In Situ Atomic Force Microscopy
,”
J. Phys. Chem. B
,
104
(
51
), pp.
12282
12291
.
14.
Cheng
,
X. B.
,
Zhang
,
R.
,
Zhao
,
C. Z.
,
Wei
,
F.
,
Zhang
,
J. G.
, and
Zhang
,
Q.
,
2016
, “
A Review of Solid Electrolyte Interphases on Lithium Metal Anode
,”
Adv. Sci.
,
3
(
3
), p.
1500213
.
15.
Peled
,
E.
,
Golodnitsky
,
D.
, and
Ardel
,
G.
,
1997
, “
Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
,”
J. Electrochem. Soc.
,
144
(
8
), pp.
L208
L210
.
16.
Christensen
,
J.
, and
Newman
,
J.
,
2004
, “
A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase
,”
J. Electrochem. Soc.
,
151
(
11
), p.
A1977
.
17.
Borodin
,
O.
,
Smith
,
G. D.
, and
Fan
,
P.
,
2006
, “
Molecular Dynamics Simulations of Lithium Alkyl Carbonates
,”
J. Phys. Chem. B
,
110
(
45
), pp.
22773
22779
.
18.
Ramasubramanian
,
A.
,
Yurkiv
,
V.
,
Foroozan
,
T.
,
Ragone
,
M.
,
Shahbazian-Yassar
,
R.
, and
Mashayek
,
F.
,
2019
, “
Lithium Diffusion Mechanism Through Solid–Electrolyte Interphase in Rechargeable Lithium Batteries
,”
J. Phys. Chem. C
,
123
(
16
), pp.
10237
10245
.
19.
Shi
,
S.
,
Lu
,
P.
,
Liu
,
Z.
,
Qi
,
Y.
,
Hector
,
L. G.
, Jr.
,
Li
,
H.
, and
Harris
,
S. J.
,
2012
, “
Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
,”
J. Am. Chem. Soc.
,
134
(
37
), pp.
15476
15487
.
20.
Single
,
F.
,
Horstmann
,
B.
, and
Latz
,
A.
,
2017
, “
Revealing SEI Morphology: In-Depth Analysis of a Modeling Approach
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3132
E3145
.
21.
Yildirim
,
H.
,
Kinaci
,
A.
,
Chan
,
M. K.
, and
Greeley
,
J. P.
,
2015
, “
First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF
,”
ACS Appl. Mater. Interfaces
,
7
(
34
), pp.
18985
18996
.
22.
Mulliner
,
A. D.
,
Aeberhard
,
P. C.
,
Battle
,
P. D.
,
David
,
W. I.
, and
Refson
,
K.
,
2015
, “
Diffusion in Li(2)O Studied by Non-equilibrium Molecular Dynamics for 873 < T/K < 1603
,”
Phys. Chem. Chem. Phys.
,
17
(
33
), pp.
21470
21475
.
23.
Wu
,
H.
,
Jia
,
H.
,
Wang
,
C.
,
Zhang
,
J. G.
, and
Xu
,
W.
,
2021
, “
Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes
,”
Adv. Energy Mater.
,
11
(
5
), p.
2003092
.
24.
Chen
,
Y. C.
,
Ouyang
,
C. Y.
,
Song
,
L. J.
, and
Sun
,
Z. L.
,
2011
, “
Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase From Density Functional Theory Study
,”
J. Phys. Chem. C
,
115
(
14
), pp.
7044
7049
.
25.
Pan
,
J.
,
Cheng
,
Y.-T.
, and
Qi
,
Y.
,
2015
, “
General Method to Predict Voltage-Dependent Ionic Conduction in a Solid Electrolyte Coating on Electrodes
,”
Phys. Rev. B
,
91
(
13
), p.
134116
.
26.
Borodin
,
O.
,
Zhuang
,
G. V.
,
Ross
,
P. N.
, and
Xu
,
K.
,
2013
, “
Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate
,”
J. Phys. Chem. C
,
117
(
15
), pp.
7433
7444
.
27.
Schafzahl
,
L.
,
Ehmann
,
H.
,
Kriechbaum
,
M.
,
Sattelkow
,
J.
,
Ganner
,
T.
,
Plank
,
H.
,
Wilkening
,
M.
, and
Freunberger
,
S. A.
,
2018
, “
Long-Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport, and Mechanical Properties
,”
Chem. Mater.
,
30
(
10
), pp.
3338
3345
.
28.
Wang
,
L.
,
Menakath
,
A.
,
Han
,
F.
,
Wang
,
Y.
,
Zavalij
,
P. Y.
,
Gaskell
,
K. J.
,
Borodin
,
O.
, et al
,
2019
, “
Identifying the Components of the Solid-Electrolyte Interphase in Li-Ion Batteries
,”
Nat. Chem.
,
11
(
9
), pp.
789
796
.
29.
Lorger
,
S.
,
Usiskin
,
R.
, and
Maier
,
J.
,
2019
, “
Transport and Charge Carrier Chemistry in Lithium Oxide
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A2215
A2220
.
30.
Guo
,
R.
, and
Gallant
,
B. M.
,
2020
, “
Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium
,”
Chem. Mater.
,
32
(
13
), pp.
5525
5533
.
31.
Shi
,
S.
,
Qi
,
Y.
,
Li
,
H.
, and
Hector
,
L. G.
,
2013
, “
Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries
,”
J. Phys. Chem. C
,
117
(
17
), pp.
8579
8593
.
32.
Lowe
,
J. S.
, and
Siegel
,
D. J.
,
2020
, “
Modeling the Interface Between Lithium Metal and Its Native Oxide
,”
ACS Appl. Mater. Interfaces
,
12
(
41
), pp.
46015
46026
.
33.
Vu
,
T. T.
,
Eom
,
G. H.
,
Lee
,
J.
,
Park
,
M.-S.
, and
Moon
,
J.
,
2021
, “
Electrolyte Interface Design for Regulating Li Dendrite Growth in Rechargeable Li-Metal Batteries: A Theoretical Study
,”
J. Power Sources
,
496
, p.
229791
.
34.
Yoon
,
G.
,
Moon
,
S.
,
Ceder
,
G.
, and
Kang
,
K.
,
2018
, “
Deposition and Stripping Behavior of Lithium Metal in Electrochemical System: Continuum Mechanics Study
,”
Chem. Mater.
,
30
(
19
), pp.
6769
6776
.
35.
Veith
,
G. M.
,
Doucet
,
M.
,
Sacci
,
R. L.
,
Vacaliuc
,
B.
,
Baldwin
,
J. K.
, and
Browning
,
J. F.
,
2017
, “
Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive
,”
Sci. Rep.
,
7
(
1
), p.
6326
.
36.
Shen
,
X.
,
Zhang
,
R.
,
Chen
,
X.
,
Cheng
,
X. B.
,
Li
,
X.
, and
Zhang
,
Q.
,
2020
, “
The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?
,”
Adv. Energy Mater.
,
10
(
10
), p.
1903645
.
37.
He
,
X.
,
Bresser
,
D.
,
Passerini
,
S.
,
Baakes
,
F.
,
Krewer
,
U.
,
Lopez
,
J.
,
Mallia
,
C. T.
, et al
,
2021
, “
The Passivity of Lithium Electrodes in Liquid Electrolytes for Secondary Batteries
,”
Nat. Rev. Mater.
,
6
(
11
), pp.
1036
1052
.
38.
Liu
,
G.
, and
Lu
,
W.
,
2017
, “
A Model of Concurrent Lithium Dendrite Growth, SEI Growth, SEI Penetration and Regrowth
,”
J. Electrochem. Soc.
,
164
(
9
), pp.
A1826
A1833
.
39.
Dey
,
A.
, and
Sullivan
,
B.
,
1970
, “
The Electrochemical Decomposition of Propylene Carbonate on Graphite
,”
J. Electrochem. Soc.
,
117
(
2
), p.
222
.
40.
Peled
,
E.
,
1979
, “
The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model
,”
J. Electrochem. Soc.
,
126
(
12
), pp.
2047
2051
.
41.
Aurbach
,
D.
,
2000
, “
Review of Selected Electrode–Solution Interactions Which Determine the Performance of Li and Li Ion Batteries
,”
J. Power Sources
,
89
(
2
), pp.
206
218
.
42.
Sacci
,
R. L.
,
Black
,
J. M.
,
Balke
,
N.
,
Dudney
,
N. J.
,
More
,
K. L.
, and
Unocic
,
R. R.
,
2015
, “
Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters
,”
Nano Lett.
,
15
(
3
), pp.
2011
2018
.
43.
Lin
,
Y.-X.
,
Liu
,
Z.
,
Leung
,
K.
,
Chen
,
L.-Q.
,
Lu
,
P.
, and
Qi
,
Y.
,
2016
, “
Connecting the Irreversible Capacity Loss in Li-Ion Batteries With the Electronic Insulating Properties of Solid Electrolyte Interphase (SEI) Components
,”
J. Power Sources
,
309
, pp.
221
230
.
44.
Ozhabes
,
Y.
,
Gunceler
,
D.
, and
Arias
,
T.
,
2015
, “
Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression
,” arXiv preprint arXiv:1504.05799.
45.
Hao
,
F.
,
Verma
,
A.
, and
Mukherjee
,
P. P.
,
2018
, “
Mechanistic Insight Into Dendrite–SEI Interactions for Lithium Metal Electrodes
,”
J. Mater. Chem. A
,
6
(
40
), pp.
19664
19671
.
46.
Wang
,
X.
,
Zeng
,
W.
,
Hong
,
L.
,
Xu
,
W.
,
Yang
,
H.
,
Wang
,
F.
,
Duan
,
H.
,
Tang
,
M.
, and
Jiang
,
H.
,
2018
, “
Stress-Driven Lithium Dendrite Growth Mechanism and Dendrite Mitigation by Electroplating on Soft Substrates
,”
Nat. Energy
,
3
(
3
), pp.
227
235
.
47.
Yu
,
Z.
,
Cui
,
Y.
, and
Bao
,
Z.
,
2020
, “
Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes
,”
Cell Rep. Phys. Sci.
,
1
(
7
), p.
100119
.
48.
Liu
,
Z.
,
Qi
,
Y.
,
Lin
,
Y. X.
,
Chen
,
L.
,
Lu
,
P.
, and
Chen
,
L. Q.
,
2016
, “
Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A592
A598
.
49.
Deng
,
Z.
,
Wang
,
Z.
,
Chu
,
I.-H.
,
Luo
,
J.
, and
Ong
,
S. P.
,
2015
, “
Elastic Properties of Alkali Superionic Conductor Electrolytes From First Principles Calculations
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A67
A74
.
50.
Monroe
,
C.
, and
Newman
,
J.
,
2005
, “
The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
,”
J. Electrochem. Soc.
,
152
(
2
), p.
A396
.
51.
Stone
,
G. M.
,
Mullin
,
S. A.
,
Teran
,
A. A.
,
Hallinan
,
D. T.
,
Minor
,
A. M.
,
Hexemer
,
A.
, and
Balsara
,
N. P.
,
2012
, “
Resolution of the Modulus Versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A222
A227
.
52.
Gao
,
Y.
,
Du
,
X.
,
Hou
,
Z.
,
Shen
,
X.
,
Mai
,
Y.-W.
,
Tarascon
,
J.-M.
, and
Zhang
,
B.
,
2021
, “
Unraveling the Mechanical Origin of Stable Solid Electrolyte Interphase
,”
Joule
,
5
(
7
), pp.
1860
1872
.
53.
Liu
,
X. R.
,
Deng
,
X.
,
Liu
,
R. R.
,
Yan
,
H. J.
,
Guo
,
Y. G.
,
Wang
,
D.
, and
Wan
,
L. J.
,
2014
, “
Single Nanowire Electrode Electrochemistry of Silicon Anode by In Situ Atomic Force Microscopy: Solid Electrolyte Interphase Growth and Mechanical Properties
,”
ACS Appl. Mater. Interfaces
,
6
(
22
), pp.
20317
20323
.
54.
Zhang
,
J.
,
Wang
,
R.
,
Yang
,
X.
,
Lu
,
W.
,
Wu
,
X.
,
Wang
,
X.
,
Li
,
H.
, and
Chen
,
L.
,
2012
, “
Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode With Atomic Force Microscopy and Spectroscopy
,”
Nano Lett.
,
12
(
4
), pp.
2153
2157
.
55.
Zheng
,
J.
,
Zheng
,
H.
,
Wang
,
R.
,
Ben
,
L.
,
Lu
,
W.
,
Chen
,
L.
,
Chen
,
L.
, and
Li
,
H.
,
2014
, “
3D Visualization of Inhomogeneous Multi-layered Structure and Young's Modulus of the Solid Electrolyte Interphase (SEI) on Silicon Anodes for Lithium Ion Batteries
,”
Phys. Chem. Chem. Phys.
,
16
(
26
), pp.
13229
13238
.
56.
Yuan
,
S.
,
Weng
,
S.
,
Wang
,
F.
,
Dong
,
X.
,
Wang
,
Y.
,
Wang
,
Z.
,
Shen
,
C.
,
Bao
,
J. L.
,
Wang
,
X.
, and
Xia
,
Y.
,
2021
, “
Revisiting the Designing Criteria of Advanced Solid Electrolyte Interphase on Lithium Metal Anode Under Practical Condition
,”
Nano Energy
,
83
, p.
105847
.
57.
Yoon
,
I.
,
Jurng
,
S.
,
Abraham
,
D. P.
,
Lucht
,
B. L.
, and
Guduru
,
P. R.
,
2018
, “
In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes
,”
Nano Lett.
,
18
(
9
), pp.
5752
5759
.
58.
Zhang
,
H.
,
Shen
,
C.
,
Huang
,
Y.
, and
Liu
,
Z.
,
2021
, “
Spontaneously Formation of SEI Layers on Lithium Metal From LiFSI/DME and LiTFSI/DME Electrolytes
,”
Appl. Surf. Sci.
,
537
, p.
147983
.
59.
Zhang
,
X.-Q.
,
Cheng
,
X.-B.
,
Chen
,
X.
,
Yan
,
C.
, and
Zhang
,
Q.
,
2017
, “
Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
,”
Adv. Funct. Mater.
,
27
(
10
), p.
1605989
.
60.
Chen
,
L.
,
Chen
,
K. S.
,
Chen
,
X.
,
Ramirez
,
G.
,
Huang
,
Z.
,
Geise
,
N. R.
,
Steinruck
,
H. G.
, et al
,
2018
, “
Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes
,”
ACS Appl. Mater. Interfaces
,
10
(
32
), pp.
26972
26981
.
61.
Yoon
,
I.
,
Jurng
,
S.
,
Abraham
,
D. P.
,
Lucht
,
B. L.
, and
Guduru
,
P. R.
,
2020
, “
Measurement of Mechanical and Fracture Properties of Solid Electrolyte Interphase on Lithium Metal Anodes in Lithium Ion Batteries
,”
Energy Storage Mater.
,
25
, pp.
296
304
.
62.
Wan
,
G.
,
Guo
,
F.
,
Li
,
H.
,
Cao
,
Y.
,
Ai
,
X.
,
Qian
,
J.
,
Li
,
Y.
, and
Yang
,
H.
,
2018
, “
Suppression of Dendritic Lithium Growth by In Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase
,”
ACS Appl. Mater. Interfaces
,
10
(
1
), pp.
593
601
.
63.
Gofer
,
Y.
,
Ben-Zion
,
M.
, and
Aurbach
,
D.
,
1992
, “
Solutions of LiAsF6 in 1, 3-Dioxolane for Secondary Lithium Batteries
,”
J. Power Sources
,
39
(
2
), pp.
163
178
.
64.
Eshetu
,
G. G.
,
Judez
,
X.
,
Li
,
C.
,
Bondarchuk
,
O.
,
Rodriguez-Martinez
,
L. M.
,
Zhang
,
H.
, and
Armand
,
M.
,
2017
, “
Lithium Azide As an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
56
(
48
), pp.
15368
15372
.
65.
Qian
,
J.
,
Xu
,
W.
,
Bhattacharya
,
P.
,
Engelhard
,
M.
,
Henderson
,
W. A.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2015
, “
Dendrite-Free Li Deposition Using Trace-Amounts of Water As an Electrolyte Additive
,”
Nano Energy
,
15
, pp.
135
144
.
66.
Wang
,
E.
,
Dey
,
S.
,
Liu
,
T.
,
Menkin
,
S.
, and
Grey
,
C. P.
,
2020
, “
Effects of Atmospheric Gases on Li Metal Cyclability and Solid-Electrolyte Interphase Formation
,”
ACS Energy Lett.
,
5
(
4
), pp.
1088
1094
.
67.
Fan
,
X.
,
Chen
,
L.
,
Borodin
,
O.
,
Ji
,
X.
,
Chen
,
J.
,
Hou
,
S.
,
Deng
,
T.
, et al
,
2018
, “
Non-flammable Electrolyte Enables Li-Metal Batteries With Aggressive Cathode Chemistries
,”
Nat. Nanotechnol.
,
13
(
8
), pp.
715
722
.
68.
Wu
,
F.
,
Zhu
,
Q.
,
Chen
,
R.
,
Chen
,
N.
,
Chen
,
Y.
,
Ye
,
Y.
,
Qian
,
J.
, and
Li
,
L.
,
2015
, “
Ionic Liquid-Based Electrolyte With Binary Lithium Salts for High Performance Lithium–Sulfur Batteries
,”
J. Power Sources
,
296
, pp.
10
17
.
69.
Wang
,
W.-W.
,
Gu
,
Y.
,
Yan
,
H.
,
Li
,
S.
,
He
,
J.-W.
,
Xu
,
H.-Y.
,
Wu
,
Q.-H.
,
Yan
,
J.-W.
, and
Mao
,
B.-W.
,
2020
, “
Evaluating Solid-Electrolyte Interphases for Lithium and Lithium-Free Anodes From Nanoindentation Features
,”
Chem
,
6
(
10
), pp.
2728
2745
.
70.
Wang
,
M.
,
Huai
,
L.
,
Hu
,
G.
,
Yang
,
S.
,
Ren
,
F.
,
Wang
,
S.
,
Zhang
,
Z.
, et al
,
2018
, “
Effect of LiFSI Concentrations to Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes
,”
J. Phys. Chem. C
,
122
(
18
), pp.
9825
9834
.
71.
Hu
,
Z.
,
Wang
,
C.
,
Wang
,
C.
,
Chen
,
B.
,
Yang
,
C.
,
Dong
,
S.
, and
Cui
,
G.
,
2022
, “
Uncovering the Critical Impact of the Solid Electrolyte Interphase Structure on the Interfacial Stability
,”
InfoMat
,
4
(
3
), p.
e12249
.
72.
Xu
,
K.
,
2004
, “
Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
,”
Chem. Rev.
,
104
(
10
), pp.
4303
4418
.
73.
Heine
,
J.
,
Hilbig
,
P.
,
Qi
,
X.
,
Niehoff
,
P.
,
Winter
,
M.
, and
Bieker
,
P.
,
2015
, “
Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
A1094
A1101
.
74.
Jung
,
R.
,
Metzger
,
M.
,
Haering
,
D.
,
Solchenbach
,
S.
,
Marino
,
C.
,
Tsiouvaras
,
N.
,
Stinner
,
C.
, and
Gasteiger
,
H. A.
,
2016
, “
Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1705
A1716
.
75.
Qian
,
J.
,
Henderson
,
W. A.
,
Xu
,
W.
,
Bhattacharya
,
P.
,
Engelhard
,
M.
,
Borodin
,
O.
, and
Zhang
,
J. G.
,
2015
, “
High Rate and Stable Cycling of Lithium Metal Anode
,”
Nat. Commun.
,
6
, p.
6362
.
76.
Zheng
,
J.
,
Lochala
,
J. A.
,
Kwok
,
A.
,
Deng
,
Z. D.
, and
Xiao
,
J.
,
2017
, “
Research Progress Towards Understanding the Unique Interfaces Between Concentrated Electrolytes and Electrodes for Energy Storage Applications
,”
Adv. Sci.
,
4
(
8
), p.
1700032
.
77.
Chen
,
S.
,
Zheng
,
J.
,
Mei
,
D.
,
Han
,
K. S.
,
Engelhard
,
M. H.
,
Zhao
,
W.
,
Xu
,
W.
,
Liu
,
J.
, and
Zhang
,
J. G.
,
2018
, “
High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes
,”
Adv. Mater.
,
30
(
21
), p.
e1706102
.
78.
Li
,
N. W.
,
Yin
,
Y. X.
,
Yang
,
C. P.
, and
Guo
,
Y. G.
,
2016
, “
An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
,”
Adv. Mater.
,
28
(
9
), pp.
1853
1858
.
79.
Wang
,
Q.
,
Wan
,
J.
,
Cao
,
X.
,
Wen
,
R.
,
Guo
,
Y.
,
Liu
,
W.
, and
Zhou
,
H.
,
2021
, “
Organophosphorus Hybrid Solid Electrolyte Interphase Layer Based on LixPO4 Enables Uniform Lithium Deposition for High-Performance Lithium Metal Batteries
,”
Adv. Funct. Mater.
,
32
(
2
), p.
2107923
.
80.
Zhang
,
C.
,
Lan
,
Q.
,
Liu
,
Y.
,
Wu
,
J.
,
Shao
,
H.
,
Zhan
,
H.
, and
Yang
,
Y.
,
2019
, “
A Dual-Layered Artificial Solid Electrolyte Interphase Formed by Controlled Electrochemical Reduction of LiTFSI/DME-LiNO3 for Dendrite-Free Lithium Metal Anode
,”
Electrochim. Acta
,
306
, pp.
407
419
.
81.
Xu
,
R.
,
Cheng
,
X.-B.
,
Yan
,
C.
,
Zhang
,
X.-Q.
,
Xiao
,
Y.
,
Zhao
,
C.-Z.
,
Huang
,
J.-Q.
, and
Zhang
,
Q.
,
2019
, “
Artificial Interphases for Highly Stable Lithium Metal Anode
,”
Matter
,
1
(
2
), pp.
317
344
.
82.
Kwak
,
W.-J.
,
Park
,
J.
,
Nguyen
,
T. T.
,
Kim
,
H.
,
Byon
,
H. R.
,
Jang
,
M.
, and
Sun
,
Y.-K.
,
2019
, “
A Dendrite- and Oxygen-Proof Protective Layer for Lithium Metal in Lithium–Oxygen Batteries
,”
J. Mater. Chem. A
,
7
(
8
), pp.
3857
3862
.
83.
Kang
,
I. S.
,
Lee
,
Y.-S.
, and
Kim
,
D.-W.
,
2013
, “
Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
161
(
1
), pp.
A53
A57
.
84.
Ma
,
G.
,
Wen
,
Z.
,
Wang
,
Q.
,
Shen
,
C.
,
Jin
,
J.
, and
Wu
,
X.
,
2014
, “
Enhanced Cycle Performance of a Li–S Battery Based on a Protected Lithium Anode
,”
J. Mater. Chem. A
,
2
(
45
), pp.
19355
19359
.
85.
Dong
,
H.
,
Xiao
,
X.
,
Jin
,
C.
,
Wang
,
X.
,
Tang
,
P.
,
Wang
,
C.
,
Yin
,
Y.
,
Wang
,
D.
,
Yang
,
S.
, and
Wu
,
C.
,
2019
, “
High Lithium-Ion Conductivity Polymer Film to Suppress Dendrites in Li Metal Batteries
,”
J. Power Sources
,
423
, pp.
72
79
.
86.
Zheng
,
G.
,
Lee
,
S. W.
,
Liang
,
Z.
,
Lee
,
H. W.
,
Yan
,
K.
,
Yao
,
H.
,
Wang
,
H.
,
Li
,
W.
,
Chu
,
S.
, and
Cui
,
Y.
,
2014
, “
Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes
,”
Nat. Nanotechnol.
,
9
(
8
), pp.
618
623
.
87.
Gao
,
Y.
,
Zhao
,
Y.
,
Li
,
Y. C.
,
Huang
,
Q.
,
Mallouk
,
T. E.
, and
Wang
,
D.
,
2017
, “
Interfacial Chemistry Regulation Via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries
,”
J. Am. Chem. Soc.
,
139
(
43
), pp.
15288
15291
.
88.
Hou
,
Z.
,
Zhang
,
J.
,
Wang
,
W.
,
Chen
,
Q.
,
Li
,
B.
, and
Li
,
C.
,
2020
, “
Towards High-Performance Lithium Metal Anodes Via the Modification of Solid Electrolyte Interphases
,”
J. Energy Chem.
,
45
, pp.
7
17
.
89.
Kang
,
D.
,
Xiao
,
M.
, and
Lemmon
,
J. P.
,
2020
, “
Artificial Solid-Electrolyte Interphase for Lithium Metal Batteries
,”
Batteries Supercaps
,
4
(
3
), pp.
445
455
.
90.
Liu
,
W.
,
Guo
,
R.
,
Zhan
,
B.
,
Shi
,
B.
,
Li
,
Y.
,
Pei
,
H.
,
Wang
,
Y.
,
Shi
,
W.
,
Fu
,
Z.
, and
Xie
,
J.
,
2018
, “
Artificial Solid Electrolyte Interphase Layer for Lithium Metal Anode in High-Energy Lithium Secondary Pouch Cells
,”
ACS Appl. Energy Mater.
,
1
(
4
), pp.
1674
1679
.
91.
Wu
,
P.
,
Dong
,
M.
,
Tan
,
J.
,
Kang
,
D. A.
, and
Yu
,
C.
,
2021
, “
Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers
,”
Adv. Mater.
,
33
(
48
), p.
e2104246
.
92.
Yurkiv
,
V.
,
Foroozan
,
T.
,
Ramasubramanian
,
A.
,
Shahbazian-Yassar
,
R.
, and
Mashayek
,
F.
,
2018
, “
The Influence of Stress Field on Li Electrodeposition in Li-Metal Battery
,”
MRS Commun.
,
8
(
3
), pp.
1285
1291
.
93.
Li
,
J.
,
Dudney
,
N. J.
,
Nanda
,
J.
, and
Liang
,
C.
,
2014
, “
Artificial Solid Electrolyte Interphase to Address the Electrochemical Degradation of Silicon Electrodes
,”
ACS Appl. Mater. Interfaces
,
6
(
13
), pp.
10083
10088
.
94.
Zhao
,
Q.
,
Stalin
,
S.
, and
Archer
,
L. A.
,
2021
, “
Stabilizing Metal Battery Anodes Through the Design of Solid Electrolyte Interphases
,”
Joule
,
5
(
5
), pp.
1119
1142
.
You do not currently have access to this content.