Abstract

Among the battery state of charge (SOC) estimation methods, the Kalman-based filter algorithms are sensitive to the battery model while the neural network (NN)-based algorithms are decided by hyperparameters. In this paper, a hybrid approach composed of a gated recurrent unit (GRU) NN and an adaptive unscented Kalman filter (AUKF) method is proposed. A GRU NN is first used to acquire the nonlinear relationship between the battery SOC and battery measurement signals, and then an AUKF is utilized to filter out the output noise of the NN to further improve estimation accuracy. The hybrid method avoids the establishment of accurate battery models and the search for optimal hyperparameters. The data of dynamical street test and US06 test are used as training dataset and validation dataset, respectively, while the data collected from the tests under federal urban driving schedules and Beijing driving cycle conditions are taken as testing dataset. As compared with some hybrid methods proposed in other literature, the hybrid method has the best estimation accuracy and generalization for various driving cycles at different ambient temperatures. The root mean square error and the mean absolute error all are less than 1.5%, and the maximum absolute error is less than 2%. In addition, it also exhibits powerful robustness against the abnormal values of the battery signals and can converge to the true value in just 5 s.

References

1.
Guo
,
Z.
,
Qiu
,
X. P.
,
Hou
,
G.
,
Liaw
,
B. Y.
, and
Zhang
,
C. S.
,
2014
, “
State of Health Estimation for Lithium Ion Batteries Based on Charging Curves
,”
J. Power Sources
,
249
, pp.
457
462
.
2.
Pop
,
V.
,
Bergville
,
H. J.
, and
Notten
,
P. H. L.
,
2005
, “
State-of-the-Art of Battery State-of-Charge Determination
,”
Meas. Sci. Technol.
,
16
(
12
), pp.
93
110
.
3.
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
,
Lu
,
L. G.
, and
Li
,
G. Q.
,
2018
, “
Investigating the Error Sources of the Online State of Charge Estimation Methods for Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
377
, pp.
161
188
.
4.
Kutluay
,
K.
,
Cadirci
,
Y.
, and
Ozkazanc
,
Y. S.
,
2005
, “
A New Online State-of-Charge Estimation and Monitoring System for Sealed Lead-Acid Batteries in Telecommunication Power Supplies
,”
IEEE Trans. Ind. Electron.
,
52
(
5
), pp.
1315
1327
.
5.
Ng
,
K. S.
,
Moo
,
C. S.
,
Chen
,
Y. P.
, and
Hsieh
,
Y. C.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.
6.
Liu
,
L.
,
Wang
,
L. Y.
,
Chen
,
Z.
,
Wang
,
C.
,
Lin
,
F.
, and
Wang
,
H.
,
2013
, “
Integrated System Identification and State-of-Charge Estimation of Battery Systems
,”
IEEE Trans. Energy Convers.
,
28
(
1
), pp.
12
23
.
7.
Daowd
,
M.
,
Omar
,
N.
,
Verbrugge
,
B.
,
Peter
,
V. D. B.
, and
Joeri
,
V. M.
,
2010
, “
Battery Models Parameter Estimation Based on Matlab-Simulink
,”
The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition
,
Shenzhen, China
,
Nov. 5–8
, Vol. 11, pp.
5
9
.
8.
Xing
,
Y. J.
,
He
,
W.
,
Pecht
,
M.
, and
Tsui
,
K. L.
,
2014
, “
State of Charge Estimation of Lithium-Ion Batteries Using the Open-Circuit Voltage at Various Ambient Temperatures
,”
Appl. Energy
,
113
(
1
), pp.
106
115
.
9.
Wang
,
S.
,
Fernandez
,
C.
, and
Yu
,
C.
,
2020
, “
A Novel Charged State Prediction Method of the Lithium Ion Battery Packs Based on the Composite Equivalent Modeling and Improved Splice Kalman Filtering Algorithm
,”
J. Power Sources
,
471
, p.
228450
.
10.
Linghu
,
J. Q.
,
Kang
,
L. Y.
,
Liu
,
M.
,
Luo
,
X.
,
Feng
,
Y. B.
, and
Lu
,
C. S.
,
2019
, “
Estimation for State-of-Charge of Lithium-Ion Battery Based on an Adaptive High-Degree Cubature Kalman Filter
,”
Energy
,
189
, p.
116204
.
11.
Ma
,
Y.
,
Duan
,
P.
,
He
,
P.
,
Zhang
,
F.
, and
Chen
,
H.
,
2019
, “
FPGA Implementation of Extended Kalman Filter for SOC Estimation of Lithium-Ion Battery in Electric Vehicle
,”
Asian J. Control
,
21
(
4
), pp.
2126
2136
.
12.
Xiong
,
R.
,
Tian
,
J.
,
Shen
,
W.
, and
Sun
,
F.
,
2019
, “
A Novel Fractional Order Model for State of Charge Estimation in Lithium Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
68
(
5
), pp.
4130
4139
.
13.
Zhu
,
Q.
,
Xu
,
M.
,
Liu
,
W.
,
Liu
,
W.
, and
Zheng
,
M.
,
2019
, “
A State of Charge Estimation Method for Lithium-Ion Batteries Based on Fractional Order Adaptive Extended Kalman Filter
,”
Energy
,
187
, p.
115880
.
14.
Chen
,
Z. W.
,
Yang
,
L. W.
,
Zhao
,
X. B.
,
Wang
,
Y. R.
, and
He
,
Z. J.
,
2019
, “
Online State of Charge Estimation of Li-Ion Battery Based on an Improved Unscented Kalman Filter Approach
,”
Appl. Math. Modell.
,
70
, pp.
532
544
.
15.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries–A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
.
16.
Li
,
B.
,
Yuan
,
X.
, and
Zhao
,
L.
,
2015
, “
Li-Ion Battery SOC Estimation Based on EKF Algorithm
,”
5th Annual IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
,
Shenyang, China
,
June 8–12
, pp.
1584
1588
.
17.
Liu
,
C.
,
Liu
,
W.
,
Wang
,
L.
,
Hu
,
G.
,
Ma
,
L.
, and
Ren
,
B.
,
2016
, “
A New Method of Modeling and State of Charge Estimation of the Battery
,”
J. Power Sources
,
320
, pp.
1
12
.
18.
Liu
,
Y.
,
Huangfu
,
Y.
,
Ma
,
R.
,
Xu
,
L.
,
Zhao
,
D.
, and
Wei
,
J.
,
2019
, “
State of Charge Estimation of Lithium-Ion Batteries Electrochemical Model With Extended Kalman Filter
,”
54th IEEE Industry Applications Society Annual Meeting
,
Baltimore, MD
,
Sept. 29–Oct. 3
, pp.
1
7
.
19.
Vidal
,
C.
,
Malysz
,
P.
,
Kollmeyer
,
P.
, and
Emadi
,
A.
,
2020
, “
Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art
,”
IEEE Access
,
8
(
3
), pp.
52796
52814
.
20.
Jiménez-Bermejo
,
D.
,
Fraile-Ardanuy
,
J.
, and
Castao-Solis
,
S.
,
2018
, “
Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles
,”
Procedia Comput. Sci.
,
130
, pp.
533
540
.
21.
Cheng
,
C.
, and
Zuchang
,
G.
,
2018
, “
State-of-Charge Estimation of Battery Pack Under Varying Ambient Temperature Using an Adaptive Sequential Extreme Learning Machine
,”
Energies
,
11
(
4
), pp.
711
741
.
22.
Zahid
,
T.
,
Xu
,
K.
,
Li
,
W.
,
Li
,
C.
, and
Li
,
H.
,
2018
, “
State of Charge Estimation for Electric Vehicle Power Battery Using Advanced Machine Learning Algorithm Under Diversified Drive Cycles
,”
Energy
,
162
, pp.
871
882
.
23.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
, and
Emadi
,
A.
,
2018
, “
State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach
,”
J. Power Sources
,
400
, pp.
242
255
.
24.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
,
Saad
,
M. H.
, and
Ayob
,
A.
,
2018
, “
Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm
,”
IEEE Access
,
6
(
1
), pp.
10069
10079
.
25.
Chaoui
,
H.
, and
Ibe-Ekeocha
,
C. C.
,
2017
, “
State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8773
8783
.
26.
Li
,
C. R.
,
Xiao
,
F.
,
Fan
,
Y. X.
,
Yang
,
G. R.
, and
Zhang
,
W. W.
,
2019
, “
A Recurrent Neural Network With Long Short-Term Memory for State of Charge Estimation of Lithium-Ion Batteries
,”
2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference
,
Chongqing, China
,
May 24–26
, pp.
1712
1716
.
27.
Vidal
,
C.
,
Kollmeyer
,
P.
,
Chemali
,
E.
, and
Emadi
,
A.
,
2019
, “
Li-Ion Battery State of Charge Estimation Using Long Short-Term Memory Recurrent Neural Network With Transfer Learning
,”
2019 IEEE Transportation Electrification Conference and Expo
,
Novi, MI
,
June 17–19
, pp.
1
6
.
28.
Li
,
C.
,
Xiao
,
F.
, and
Fan
,
Y.
,
2019
, “
An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks With Gated Recurrent Unit
,”
Energies
,
12
(
9
), p.
1592
.
29.
Abbas
,
G.
,
Nawaz
,
M.
, and
Kamran
,
F.
,
2019
, “
Performance Comparison of NARX & RNN-LSTM Neural Networks for LiFePO4 Battery State of Charge Estimation
,”
16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)
,
Islamabad, Pakistan
,
Jan. 8–12
, pp.
463
468
.
30.
Xiao
,
B.
,
Liu
,
Y.
, and
Xiao
,
B.
,
2019
, “
Accurate State-of-Charge Estimation Approach for Lithium-Ion Batteries by Gated Recurrent Unit With Ensemble Optimizer
,”
IEEE Access
,
7
(
4
), pp.
54192
54202
.
31.
Yang
,
F.
,
Li
,
W.
,
Li
,
C.
, and
Miao
,
Q.
,
2019
, “
State-of-Charge Estimation of Lithium-Ion Batteries Based on Gated Recurrent Neural Network
,”
Energy
,
175
, pp.
66
75
.
32.
Chemali
,
E.
,
Kollmeyer
,
P. J.
, and
Preindl
,
M.
,
2018
, “
Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6730
6739
.
33.
Hong
,
J.
,
Wang
,
Z.
,
Chen
,
W.
,
Wang
,
L.-Y.
, and
Qu
,
C.
,
2020
, “
Online Joint-Prediction of Multi-Forward-Step Battery SOC Using LSTM Neural Networks and Multiple Linear Regression for Real-World Electric Vehicles
,”
J. Energy Storage
,
30
, p.
101459
.
34.
Lipu
,
M. S. H.
,
Hannan
,
M. A.
,
Hussain
,
A.
,
Saad
,
M. H.
,
Ayob
,
A.
, and
Blaabjerg
,
F.
,
2018
, “
State of Charge Estimation for Lithium-Ion Battery Using Recurrent NARX Neural Network Model Based Lighting Search Algorithm
,”
IEEE Access
,
6
(
5
), pp.
28150
28161
.
35.
Yang
,
F. F.
,
Zhang
,
S. H.
,
Li
,
W. H.
, and
Miao
,
Q.
,
2020
, “
State-of-Charge Estimation of Lithium-Ion Batteries Using LSTM and UKF
,”
Energy
,
201
, p.
117664
. .
36.
Tian
,
Y.
,
Lai
,
R. C.
,
Li
,
X. Y.
,
Xiang
,
L. J.
, and
Tian
,
J. D.
,
2020
, “
A Combined Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network and an Adaptive Cubature Kalman Filter
,”
Appl. Energy
,
265
, pp.
114789
.
37.
Li
,
C. R.
,
Xiao
,
F.
,
Fan
,
Y. X.
,
Yang
,
G. R.
, and
Tang
,
X.
,
2020
, “
A Hybrid Approach to Lithium-Ion Battery SOC Estimation Based on Recurrent Neural Network With Gated Recurrent Unit and Huber-M Robust Kalman Filter
,”
Trans. China Electrotech. Soc.
,
35
(
9
), pp.
2051
2062
.
You do not currently have access to this content.