Abstract

Aiming at the problems of low screening efficiency, high energy consumption and low grouping rate of decommissioned power batteries at this stage, a fast screening and recombinant method based on short-time pulse discharge and electrochemical impedance spectroscopy (EIS) for decommissioned power batteries is proposed. More than 200 decommissioned lithium iron phosphate power batteries of the same type and different batches were tested and analyzed by short-time pulse discharge and EIS. Then, the obtained pulse voltage difference, DC internal resistance, EIS curve shape characteristics and EIS equivalent circuit model parameters are used as screening indexes, and a mathematical model is established to realize the rapid and effective sorting and reorganization of decommissioned power batteries. The experimental results show that this method has low energy consumption, the average test time of single cell is less than 20 min, and the consistency index is good after grouping, so it has great practical value in engineering.

References

1.
Braco
,
E.
,
Martín
,
I. S.
,
Berrueta
,
A.
,
Sanchis
,
P.
, and
Ursúa
,
A.
,
2020
, “
Experimental Assessment of Cycling Ageing of Lithium-Ion Second-Life Batteries From Electric Vehicles
,”
J. Energy Storage
,
32
(
1
), p.
101695
.
2.
Muhammad
,
M.
,
Ahmeid
,
M.
,
Attidekou
,
P. S.
,
Milojevic
,
Z.
, and
Das
,
P.
,
2019
, “
Assessment of Spent EV Batteries for Second-Life Application
,”
2019 IEEE 4th International Future Energy Electronics Conference (IFEEC)
,
Singapore
,
Nov. 25–28
, pp.
1
5
.
3.
Opitz
,
A.
,
Badami
,
P.
,
Shen
,
L.
,
Vignarooban
,
K.
, and
Kannan
,
A. M.
,
2017
, “
Can Li-Ion Batteries be the Panacea for Automotive Applications?
Renewable Sustainable Energy Rev.
,
68
(
Part 1
), pp.
685
692
.
4.
Qi
,
W.
,
Sun
,
Y.
,
Ni
,
F.
, and
Luo
,
Y.
,
2016
, “
A New Method of Battery State of Charge Prediction in the Hybrid Electric Vehicle
,”
Trans. China Electrotech. Soc.
,
31
(
9
), pp.
189
196
.
5.
Zhou
,
L.
,
Garg
,
A.
,
Zheng
,
J.
,
Gao
,
L.
, and
Ki-Yong
,
O.
,
2020
, “
Battery Pack Recycling Challenges for the Year 2030: Recommended Solutions Based on Intelligent Robotics for Safe and Efficient Disassembly, Residual Energy Detection, and Secondary Utilization
,”
Energy Storage
,
3
(
3
), p.
e190
.
6.
Datong
,
L.
,
Yuchen
,
S.
,
Wei
,
W.
,
Chen
,
Y.
, and
Yu
,
P.
,
2020
, “
Overview of Health State Estimation of Lithium Ion Battery Pack
,”
J. Instrum.
,
41
(
11
), pp.
1
18
.
7.
Cuma
,
M. U.
, and
Koroglu
,
T.
,
2015
, “
A Comprehensive Review on Estimation Strategies Used in Hybrid and Battery Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
42
(
1
), pp.
517
531
.
8.
Wu
,
M.
,
Sun
,
L. J.
, and
Kou
,
L. F.
,
2020
, “
Capacity Configuration Method for Second-Use Electric Vehicle Batteries of Active Distribution Network Based on Demand Side Response
,”
High Voltage Eng.
,
46
(
1
), pp.
71
79
.
9.
Schneider
,
E. L.
,
Oliveira
,
C. T.
,
Brito
,
R. M.
, and
Malfatti
,
C. F.
,
2014
, “
Classification of Discarded NiMH and Li-Ion Batteries and Reuse of the Cells Still in Operational Conditions in Prototypes
,”
J. Power Sources
,
262
(
15
), pp.
1
9
.
10.
Enache
,
B. A.
,
Seritan
,
G. C.
,
Grigorescu
,
S. D.
,
Cepisca
,
C.
, and
Voicila
,
T. I.
,
2020
, “
A Battery Screening System for Second Life LiFePO Batteries
,”
2020 International Conference and Exposition on Electrical and Power Engineering (EPE)
,
Iasi, Romania
,
Oct. 22–23
, pp.
298
301
.
11.
Liu
,
W.
,
Li
,
H.
,
Deng
,
Y.
,
Yang
,
F.
, and
Cong
,
L.
,
2020
, “
Fast Screening of Capacity and Internal Resistance for Cascade Utilization of the Retired Power Lithium-Ion Batteries
,”
J. Phys. Conf. Ser.
,
1678
(
1
), p.
012067
.
12.
Schuster
,
S. F.
,
Brand
,
M. J.
,
Campestrini
,
C.
,
Gleissenberger
,
M.
, and
Jossen
,
A.
,
2016
, “
Correlation Between Capacity and Impedance of Lithium-ion Cells During Calendar and Cycle Life
,”
J. Power Sources
,
305
(
15
), pp.
191
199
.
13.
Zhikun
,
Z.
,
Guangjin
,
Z.
,
Yang
,
J.
,
Zhixing
,
Z.
, and
Jinfeng
,
G.
,
2019
, “
Screening of Energy Storage Echelon Utilization of Retired Lithium Ion Power Batteries Based on Coulomb Efficiency
,”
J. Electron.
,
34
(
S1
), pp.
388
395
.
14.
Yuejiu
,
Z.
,
Jiaqi
,
L.
,
Zhiwei
,
Z.
,
Xin
,
L.
, and
Zheng
,
Z.
,
2020
, “
Fast Sorting Technology of Retired Lithium Battery Modules Based on Fast Charging Curve Power Grid Technology
,”
Power Syst. Technol.
,
44
(
5
), p.
9
.
15.
Zhang Ch
,
L.
,
Zhao
,
S. H.
, and
Zhang
,
B.
,
2021
, “
Fast Sorting Method of Retired Power Batteries Based on Factor Analysis and K-Means Clustering
,”
Power Syst. Prot. Control
,
49
(
12
), p.
7
.
16.
Lai
,
X.
,
Qiao
,
D.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
, and
Zhou
,
L.
,
2019
, “
A Rapid Screening and Regrouping Approach Based on Neural Networks for Large-Scale Retired Lithium-Ion Cells in Second-Use Applications
,”
J. Cleaner Prod.
,
213
(
10
), pp.
776
791
.
17.
Movassagh
,
K.
,
Raihan
,
S. A.
, and
Balasingam
,
B.
,
2019
, “
Performance Analysis of Coulomb Counting Approach for State of Charge Estimation
,”
2019 IEEE Electrical Power and Energy Conference (EPEC)
,
Montreal, QC, Canada
,
Oct. 16–18
, pp.
1
6
.
18.
Jiang
,
Y.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
,
Gao
,
Y.
, and
Guo
,
Q.
,
2017
, “
Recognition of Battery Aging Variations for Lifepo 4 Batteries in 2nd Use Applications Combining Incremental Capacity Analysis and Statistical Approaches
,”
J. Power Sources
,
360
(
31
), pp.
180
188
.
19.
Luo
,
F.
,
Huang
,
H. H.
,
Ni
,
L. P.
, and
Li
,
T.
,
2021
, “
Rapid Prediction of the State of Health of Retired Power Batteries Based on Electrochemical Impedance Spectroscopy
,”
J. Energy Storage
,
41
(
3
), p.
102866
.
20.
Coleman
,
M.
,
Hurley
,
W. G.
, and
Lee
,
C. K.
,
2008
, “
An Improved Battery Characterization Method Using a Two-Pulse Load Test
,”
IEEE Trans. Energy Convers.
,
23
(
2
), pp.
708
713
.
You do not currently have access to this content.