Abstract

Consistence of lithium-ion power battery significantly affects the life and safety of battery modules and packs. To improve the consistence, battery grouping is employed, assembling batteries with similar electrochemical characteristics to make up modules and packs. Therefore, grouping process boils down to unsupervised clustering problem. Current used grouping approaches include two aspects, static characteristics based and dynamic based. However, there are three problems. First, the common problem is under utilization of multi-source data. Second, for the static characteristics based, there is grouping failure over time. Third, for the dynamic characteristics based, there is high computational complexity. To solve these problems, we propose a distributed multisource data fusion based battery grouping approach. The proposed approach designs an effective network structure for multisource data fusing and feature extracting from both static and dynamic multisource data. We apply our approach on real battery modules and record state of health (SOH) during charging-discharging cycles. Experiments indicate that the proposed approach can increase SOH of modules by 3.89% and reduce the inconsistence by 68.4%. Meanwhile, with the distributed deployment the time cost is reduced by 87.9% than the centralized scheme.

References

1.
Oliveira
,
L.
,
Messagie
,
M.
,
Rangaraju
,
S.
,
Sanfelix
,
J.
,
Rivas
,
M. H.
, and
Van Mierlo
,
J.
,
2015
, “
Key Issues of Lithium-Ion Batteries–from Resource Depletion to Environmental Performance Indicators
,”
J. Cleaner. Prod.
,
108
, pp.
354
362
.
2.
Yoshio
,
M.
,
Brodd
,
R. J.
, and
Kozawa
,
A.
,
2009
,
Lithium-Ion Batteries
, Vol.
1
,
Springer
,
New York
.
3.
Van Schalkwijk
,
W.
, and
Scrosati
,
B.
,
2002
,
Advances in Lithium Ion Batteries Introduction
,
Springer
,
Boston, MA
, pp.
1
5
.
4.
Barreras
,
J.
,
Fleischer
,
C.
,
Christensen
,
A.
,
Swierczynski
,
M.
,
Schaltz
,
E.
,
Andreasen
,
S.
, and
Sauer
,
D.
,
2016
, “
An Advanced Hil Simulation Battery Model for Battery Management System Testing
,”
IEEE. Trans. Ind. Appl.
,
52
(
6
), pp.
5086
5099
.
5.
Wang
,
Q.
,
Wang
,
Z.
,
Zhang
,
L.
,
Liu
,
P.
, and
Zhang
,
Z.
,
2020
, “
A Novel Consistency Evaluation Method for Series-connected Battery Systems Based on Real-World Operation Data
,”
IEEE Trans. Trans. Electrif.
,
7
(
2
), pp.
437
451
.
6.
Kim
,
B. H.
, and
Lie
,
D.
,
2015
, “
Caelus: Verifying the Consistency of Cloud Services With Battery-Powered Devices
,”
2015 IEEE Symposium on Security and Privacy
,
San Jose, CA
, IEEE, pp.
880
896
.
7.
Chiu
,
K. C.
,
Lin
,
C. H.
,
Yeh
,
S. F.
,
Lin
,
Y. H.
,
Huang
,
C. S.
, and
Chen
,
K. C.
,
2014
, “
Cycle Life Analysis of Series Connected Lithium-Ion Batteries With Temperature Difference
,”
J. Power Sources
,
263
, pp.
75
84
.
8.
Niu
,
X.
,
Garg
,
A.
,
Goyal
,
A.
,
Simeone
,
A.
,
Bao
,
N.
,
Zhang
,
J.
, and
Peng
,
X.
,
2019
, “
A Coupled Electrochemical-Mechanical Performance Evaluation for Safety Design of Lithium-Ion Batteries in Electric Vehicles: An Integrated Cell and System Level Approach
,”
J. Cleaner. Prod.
,
222
, pp.
633
645
.
9.
Gogoana
,
R.
,
Pinson
,
M. B.
,
Bazant
,
M. Z.
, and
Sarma
,
S. E.
,
2014
, “
Internal Resistance Matching for Parallel-Connected Lithium-Ion Cells and Impacts on Battery Pack Cycle Life
,”
J. Power Sources
,
252
, pp.
8
13
.
10.
Ouyang
,
M.
,
Zhang
,
M.
,
Feng
,
X.
,
Lu
,
L.
,
Li
,
J.
,
He
,
X.
, and
Zheng
,
Y.
,
2015
, “
Internal Short Circuit Detection for Battery Pack Using Equivalent Parameter and Consistency Method
,”
J. Power Sources
,
294
, pp.
272
283
.
11.
Li
,
X.
,
Wang
,
T.
,
Pei
,
L.
,
Zhu
,
C.
, and
Xu
,
B.
,
2014
, “
A Comparative Study of Sorting Methods for Lithium-Ion Batteries
,”
2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific)
,
Beijing, China
, IEEE, pp.
1
6
.
12.
Lai
,
X.
,
Qiao
,
D.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
, and
Zhou
,
L.
,
2019
, “
A Rapid Screening and Regrouping Approach Based on Neural Networks for Large-Scale Retired Lithium-Ion Cells in Second-Use Applications
,”
J. Cleaner. Prod.
,
213
, pp.
776
791
.
13.
Kim
,
J.
,
Shin
,
J.
,
Chun
,
C.
, and
Cho
,
B.
,
2011
, “
Stable Configuration of a Li-Ion Series Battery Pack Based on a Screening Process for Improved Voltage/SOC Balancing
,”
IEEE Trans. Power Electron.
,
27
(
1
), pp.
411
424
.
14.
Zeng
,
Y.
,
Yang
,
Y.
,
He
,
Z.
,
Gao
,
M.
,
Wang
,
C.
, and
Hong
,
M.
,
2016
, “
Lead-acid Battery Automatic Grouping System Based on Graph Cuts
,”
Electric Power Comp. Syst.
,
44
(
4
), pp.
450
458
.
15.
Yun
,
L.
,
Sandoval
,
J.
,
Zhang
,
J.
,
Gao
,
L.
,
Garg
,
A.
, and
Wang
,
C.-T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy. Convers. Storage.
,
16
(
2
), p.
021011
.
16.
He
,
Z.
,
Gao
,
M.
,
Ma
,
G.
,
Liu
,
Y.
, and
Tang
,
L.
,
2016
, “
Battery Grouping With Time Series Clustering Based on Affinity Propagation
,”
Energies
,
9
(
7
), p.
561
.
17.
Bai
,
X.
,
Tan
,
J.
,
Wang
,
X.
,
Wang
,
L.
,
Liu
,
C.
,
Shi
,
L.
, and
Sun
,
W.
,
2019
, “
Study on Distributed Lithium-Ion Power Battery Grouping Scheme for Efficiency and Consistency Improvement
,”
J. Cleaner. Prod.
,
233
, pp.
429
445
.
18.
Huang
,
J.
,
Chen
,
D.
,
Yang
,
Y.
, and
Gao
,
M.
,
2018
, “
Battery Grouping Based on Improved K-means with Curve Fitting
,”
2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Wuhan, China
, IEEE, pp.
1966
1971
.
19.
Rodriguez
,
A.
, and
Laio
,
A.
,
2014
, “
Clustering by Fast Search and Find of Density Peaks
,”
Science
,
344
(
6191
), pp.
1492
1496
.
20.
Liao
,
T. W.
,
2005
, “
Clustering of Time Series Data–a Survey
,”
Pattern Recogni.
,
38
(
11
), pp.
1857
1874
.
21.
Aghabozorgi
,
S.
,
Shirkhorshidi
,
A. S.
, and
Wah
,
T. Y.
,
2015
, “
Time-Series Clustering-A Decade Review
,”
Inform. Syst.
,
53
, pp.
16
38
.
22.
Liu
,
C.
,
Tan
,
J.
,
Shi
,
H.
, and
Wang
,
X.
,
2018
, “
Lithium-Ion Cell Screening With Convolutional Neural Networks Based on Two-Step Time-Series Clustering and Hybrid Resampling for Imbalanced Data
,”
IEEE Access
,
6
, pp.
59001
59014
.
23.
Xu
,
Z.
,
Wang
,
J.
,
Lund
,
P. D.
,
Fan
,
Q.
,
Dong
,
T.
,
Liang
,
Y.
, and
Hong
,
J.
,
2020
, “
A Novel Clustering Algorithm for Grouping and Cascade Utilization of Retired Li-Ion Batteries
,”
J. Energy Stor.
,
29
, p.
101303
.
24.
Wang
,
Q.
,
Cheng
,
X.
, and
Wang
,
J.
,
2017
, “
A New Algorithm for a Fast Testing and Sorting System Applied to Battery Clustering
,”
2017 6th International Conference on Clean Electrical Power (ICCEP)
,
Santa Margherita Ligure
, IEEE, pp.
397
402
.
25.
Yang
,
J.
,
Ma
,
G.
,
Gao
,
M.
, and
He
,
Z.
,
2017
, “
Battery Grouping With Time Series Clustering Based on Features
,”
2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)
,
Edinburgh, UK
, IEEE, pp.
1319
1323
.
26.
He
,
Z.
,
Chen
,
J.
, and
Gao
,
M.
,
2018
, “
Feature Time Series Clustering for Lithium Battery Based on SOM Neural Network
,”
2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Wuhan, China
, IEEE, pp.
358
363
.
27.
Li
,
W.
,
Chen
,
S.
,
Peng
,
X.
,
Xiao
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
.
28.
Rudenko
,
A.
,
Reiher
,
P.
,
Popek
,
G. J.
, and
Kuenning
,
G. H.
,
1998
, “
Saving Portable Computer Battery Power Through Remote Process Execution
,”
ACM Sigmobile Mobile Comput. Commun. Rev.
,
2
(
1
), pp.
19
26
.
29.
Wang
,
Y.
,
Tan
,
J.
,
Liu
,
Z.
, and
Ditta
,
A.
,
2020
, “
Lithium-ion Battery Screening by K-means with Dbscan for Denoising
,”
CMC-Comput. Mater. Cont.
,
65
(
3
), pp.
2111
2122
.
30.
Guo
,
L.
, and
Liu
,
G. W.
,
2012
, “
Research of Lithium-Ion Battery Sorting Method Based on Fuzzy c-means Algorithm
.”
Advanced Materials Research
, Vol.
354
, Trans. Tech. Publ., pp.
983
988
.
You do not currently have access to this content.