Abstract

The structure of the cathode catalyst layer (CCL) is critically important for improving the performance, durability, and stability of polymer electrolyte fuel cells (PEFCs). In this study, we designed CCLs with a three-dimensional (3D) structure that could increase the surface area of the CCLs to decrease their oxygen transfer resistance. The CCLs were fabricated using an inkjet printing method, and the electrochemical performance of the CCLs in a membrane electrode assembly was evaluated using an actual cell. The results showed that at high Pt loadings, the performance of the CCL with the 3D structure was superior to that of the flat structure. In particular, at a high current density, which is related to mass transport resistance, the two structures exhibited a significant difference in performance. At a Pt loading of 0.3 mg/cm2, the CCL with the 3D structure showed the highest maximum power density among all the CCLs investigated in this study. This indicates that the 3D structure decreases the oxygen transfer resistance of the CCL. Overall, the 3D structure provided improved morphological and microstructural characteristics to the CCL for fuel cell applications.

References

1.
Inoue
,
G.
,
2016
, “Secondary Batteries and Fuel Cell Systems for Next-Generation Vehicles,”
Energy Technology Roadmaps of Japan
,
Y.
Kato
,
M.
Koyama
,
Y.
Fukushima
, and
T.
Nakagaki
, eds.,
Springer Japan
,
Tokyo
, pp.
537
547
.
2.
Debe
,
M. K.
,
2012
, “
Electrocatalyst Approaches and Challenges for Automotive Fuel Cells
,”
Nature
,
486
(
7401
), pp.
43
51
.
3.
Yoon
,
W.
, and
Weber
,
A. Z.
,
2011
, “
Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers
,”
J. Electrochem. Soc.
,
158
(
8
), p.
B1007
.
4.
Wilson
,
A.
,
Kleen
,
G.
, and
Papageorgopoulos
,
D.
,
2017
, “
DOE Hydrogen and Fuel Cells Program Record,” Fuel Cell System Cost—2017
.
5.
Liu
,
W.
,
Suzuki
,
T.
,
Mao
,
H.
, and
Schmiedel
,
T.
,
2013
, “
Development of Thin, Reinforced PEMFC Membranes Through Understanding of Structure-Property-Performance Relationships
,”
ECS Trans.
,
50
(
2
), pp.
51
64
.
6.
Darling
,
R. M.
,
2018
, “
A Hierarchical Model for Oxygen Transport in Agglomerates in the Cathode Catalyst Layer of a Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
F571
F580
.
7.
So
,
M.
,
Park
,
K.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2020
, “
A Particle Based Ionomer Attachment Model for a Fuel Cell Catalyst Layer
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013544
.
8.
Inoue
,
G.
,
Yokoyama
,
K.
,
Ooyama
,
J.
,
Terao
,
T.
,
Tokunaga
,
T.
,
Kubo
,
N.
, and
Kawase
,
M.
,
2016
, “
Theoretical Examination of Effective Oxygen Diffusion Coefficient and Electrical Conductivity of Polymer Electrolyte Fuel Cell Porous Components
,”
J. Power Sources
,
327
, pp.
610
621
.
9.
Sambandam
,
S.
,
Parrondo
,
J.
, and
Ramani
,
V.
,
2013
, “
Estimation of Electrode Ionomer Oxygen Permeability and Ionomer-Phase Oxygen Transport Resistance in Polymer Electrolyte Fuel Cells
,”
Phys. Chem. Chem. Phys.
,
15
(
36
), pp.
14994
15002
.
10.
Sun
,
X.
,
Yu
,
H.
,
Zhou
,
L.
,
Gao
,
X.
,
Zeng
,
Y.
,
Yao
,
D.
,
He
,
L.
, and
Shao
,
Z.
,
2020
, “
Influence of Platinum Dispersity on Oxygen Transport Resistance and Performance in PEMFC
,”
Electrochim. Acta
,
332
, p.
135474
.
11.
Cetinbas
,
F. C.
,
Ahluwalia
,
R. K.
,
Kariuki
,
N. N.
,
De Andrade
,
V.
, and
Myers
,
D. J.
,
2020
, “
Effects of Porous Carbon Morphology, Agglomerate Structure and Relative Humidity on Local Oxygen Transport Resistance
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013508
.
12.
Inoue
,
G.
,
Ohnishi
,
T.
,
So
,
M.
,
Park
,
K.
,
Ono
,
M.
, and
Tsuge
,
Y.
,
2019
, “
Simulation of Carbon Black Aggregate and Evaluation of Ionomer Structure on Carbon in Catalyst Layer of Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
439
, p.
227060
.
13.
So
,
M.
,
Park
,
K.
,
Ohnishi
,
T.
,
Ono
,
M.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2019
, “
A Discrete Particle Packing Model for the Formation of a Catalyst Layer in Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
60
), pp.
32170
32183
.
14.
O’Neil
,
K.
,
Meyers
,
J. P.
,
Darling
,
R. M.
, and
Perry
,
M. L.
,
2012
, “
Oxygen Gain Analysis for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
373
382
.
15.
Fernández
,
R.
,
Ferreira-Aparicio
,
P.
, and
Daza
,
L.
,
2005
, “
PEMFC Electrode Preparation: Influence of the Solvent Composition and Evaporation Rate on the Catalytic Layer Microstructure
,”
J. Power Sources
,
151
(
1–2
), pp.
18
24
.
16.
Ngo
,
T. T.
,
Yu
,
T. L.
, and
Lin
,
H. L.
,
2013
, “
Influence of the Composition of Isopropyl Alcohol/Water Mixture Solvents in Catalyst Ink Solutions on Proton Exchange Membrane Fuel Cell Performance
,”
J. Power Sources
,
225
, pp.
293
303
.
17.
So
,
M.
,
Ohnishi
,
T.
,
Park
,
K.
,
Ono
,
M.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2019
, “
The Effect of Solvent and Ionomer on Agglomeration in Fuel Cell Catalyst Inks: Simulation by the Discrete Element Method
,”
Int. J. Hydrogen Energy
,
44
(
54
), pp.
28984
28995
.
18.
Suzuki
,
T.
,
Tsushima
,
S.
, and
Hirai
,
S.
,
2013
, “
Fabrication and Performance Evaluation of Structurally-Controlled PEMFC Catalyst Layers by Blending Platinum-Supported and Stand-Alone Carbon Black
,”
J. Power Sources
,
233
, pp.
269
276
.
19.
Mao
,
Q.
,
Sun
,
G.
,
Wang
,
S.
,
Sun
,
H.
,
Wang
,
G.
,
Gao
,
Y.
,
Ye
,
A.
,
Tian
,
Y.
, and
Xin
,
Q.
,
2007
, “
Comparative Studies of Configurations and Preparation Methods for Direct Methanol Fuel Cell Electrodes
,”
Electrochim. Acta
,
52
(
24
), pp.
6763
6770
.
20.
Kim
,
K.-H.
,
Lee
,
K.-Y.
,
Kim
,
H.-J.
,
Cho
,
E.
,
Lee
,
S.-Y.
,
Lim
,
T.-H.
,
Yoon
,
S. P.
,
Hwang
,
I. C.
, and
Jang
,
J. H.
,
2010
, “
The Effects of Nafion® Ionomer Content in PEMFC MEAs Prepared by a Catalyst-Coated Membrane (CCM) Spraying Method
,”
Int. J. Hydrogen Energy
,
35
(
5
), pp.
2119
2126
.
21.
Chaparro
,
A. M.
,
Gallardo
,
B.
,
Folgado
,
M. A.
,
Martín
,
A. J.
, and
Daza
,
L.
,
2009
, “
PEMFC Electrode Preparation by Electrospray: Optimization of Catalyst Load and Ionomer Content
,”
Catal. Today
,
143
(
3–4
), pp.
237
241
.
22.
Wang
,
Z.
, and
Nagao
,
Y.
,
2014
, “
Effects of Nafion Impregnation Using Inkjet Printing for Membrane Electrode Assemblies in Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
129
, pp.
343
347
.
23.
Shukla
,
S.
,
Domican
,
K.
,
Karan
,
K.
,
Bhattacharjee
,
S.
, and
Secanell
,
M.
,
2015
, “
Analysis of Low Platinum Loading Thin Polymer Electrolyte Fuel Cell Electrodes Prepared by Inkjet Printing
,”
Electrochim. Acta
,
156
, pp.
289
300
.
24.
Park
,
K.
,
Ohnishi
,
T.
,
Goto
,
M.
,
So
,
M.
,
Takenaka
,
S.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2019
, “
Improvement of Cell Performance in Catalyst Layers With Silica-Coated Pt/Carbon Catalysts for Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
45
(
3
), pp.
1867
1877
.
25.
Yu
,
W.
,
Zhou
,
H.
,
Li
,
B. Q.
, and
Ding
,
S.
,
2017
, “
3D Printing of Carbon Nanotubes-Based Microsupercapacitors
,”
ACS Appl. Mater. Interfaces
,
9
(
5
), pp.
4597
4604
.
26.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
27.
Gao
,
T.
,
Zhou
,
Z.
,
Yu
,
J.
,
Zhao
,
J.
,
Wang
,
G.
,
Cao
,
D.
,
Ding
,
B.
, and
Li
,
Y.
,
2019
, “
3D Printing of Tunable Energy Storage Devices With Both High Areal and Volumetric Energy Densities
,”
Adv. Energy Mater.
,
9
(
8
), pp.
1
10
.
28.
Zhu
,
C.
,
Liu
,
T.
,
Qian
,
F.
,
Han
,
T. Y. J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
,
Worsley
,
M. A.
, and
Li
,
Y.
,
2016
, “
Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels With Periodic Macropores
,”
Nano Lett.
,
16
(
6
), pp.
3448
3456
.
29.
Liu
,
C.
,
Xu
,
F.
,
Cheng
,
X.
,
Tong
,
J.
,
Liu
,
Y.
,
Chen
,
Z.
,
Lao
,
C.
, and
Ma
,
J.
,
2019
, “
Comparative Study on the Electrochemical Performance of LiFePO4 Cathodes Fabricated by Low Temperature 3D Printing, Direct Ink Writing and Conventional Roller Coating Process
,”
Ceram. Int.
,
45
(
11
), pp.
14188
14197
.
30.
Yunker
,
P. J.
,
Still
,
T.
,
Lohr
,
M. A.
, and
Yodh
,
A. G.
,
2011
, “
Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions
,”
Nature
,
476
(
7360
), pp.
308
311
.
31.
Choi
,
S.
,
Stassi
,
S.
,
Pisano
,
A. P.
, and
Zohdi
,
T. I.
,
2010
, “
Coffee-Ring Effect-Based Three Dimensional Patterning of Micro/Nanoparticle Assembly With a Single Droplet
,”
Langmuir
,
26
(
14
), pp.
11690
11698
.
32.
Sassin
,
M. B.
,
Garsany
,
Y.
,
Atkinson
,
R. W.
,
Hjelm
,
R. M. E.
, and
Swider-Lyons
,
K. E.
,
2019
, “
Understanding the Interplay Between Cathode Catalyst Layer Porosity and Thickness on Transport Limitations En Route to High-Performance PEMFCs
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
16944
16955
.
33.
Owejan
,
J. P.
,
Owejan
,
J. E.
, and
Gu
,
W.
,
2013
, “
Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
F824
F833
.
34.
Bezerra
,
C. A. G.
,
Deiner
,
L. J.
, and
Tremiliosi-Filho
,
G.
,
2020
, “
Inkjet Printed Double-Layered Cathodes for PEM Fuel Cells
,”
J. Electrochem. Soc.
,
167
(
12
), p.
124503
.
You do not currently have access to this content.