Abstract

Battery thermal management system (BTMS) has significant impacts on the performance of electric vehicles (EVs). In this research, a computational fluid dynamics (CFD) coupled multi-objective optimization framework is proposed to improve the thermal performance of the battery pack having metal separators. CFD is utilized to study the thermal and fluid dynamics performance of the designed battery pack. Input parameters include inlet air temperature, thermal conductivity of coolant, thermal conductivity of metal separator, and diameter of heat dissipation hole. Five vital output parameters are maximum temperature, average temperature, temperature standard deviation (TSD), maximum pressure, and volume of the pack. The support vector machine (SVM) model is used to replace the real output parameters of the battery pack. Sensitivity analysis results indicate that the diameter of heat dissipation hole is the main factor affecting the volume of the structure and the pressure drop, while the inlet air temperature has significant influence on the battery pack thermal behavior. The cooling efficiency and the uniformity of temperature distribution are mainly determined by the inlet air temperature. The decrease of inlet air temperature could lead to a rise of temperature standard deviation. The nondominated sorting genetic algorithm-II (NSGA-II) is taken to acquire the optimum set of input parameters. The obtained optimal scheme of battery pack can improve the cooling efficiency as well as reducing the volume cost and the energy consumption of the cooling system while such design may result in a higher level of nonuniformity of the temperature and pressure distribution.

References

1.
Li
,
X. S.
,
He
,
F.
, and
Ma
,
L.
,
2013
, “
Thermal Management of Cylindrical Batteries Investigated Using Wind Tunnel Testing and Computational Fluid Dynamics Simulation
,”
J. Power Sources
,
238
, pp.
395
402
. 10.1016/j.jpowsour.2013.04.073
2.
Wang
,
S. L.
,
Fernandez
,
C.
,
Zou
,
C. Y.
,
Yu
,
C. M.
,
Li
,
X. X.
,
Pei
,
S. J.
, and
Xie
,
W.
,
2018
, “
Open Circuit Voltage and State of Charge Relationship Functional Optimization for the Working State Monitoring of the Aerial Lithium-Ion Battery Pack
,”
J. Clean Prod.
,
198
, pp.
1090
1104
. 10.1016/j.jclepro.2018.07.030
3.
Xie
,
Y. Q.
,
Shi
,
S.
,
Tang
,
J. C.
,
Wu
,
H. W.
, and
Yu
,
J. Z.
,
2018
, “
Experimental and Analytical Study on Heat Generation Characteristics of a Lithium-Ion Power Battery
,”
Int. J. Heat Mass Transfer
,
122
, pp.
884
894
. 10.1016/j.ijheatmasstransfer.2018.02.038
4.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X. B.
,
Le
,
P. M. L.
,
Tran
,
V. M.
, and
Gao
,
L.
,
2020
, “
Intelligent Optimization Methodology of Battery Pack for Electric Vehicles: A Multidisciplinary Perspective
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9686
9706
. 10.1002/er.5600
5.
Liu
,
Z. M.
,
Wang
,
Y. X.
,
Zhang
,
J.
, and
Liu
,
Z. B.
,
2014
, “
Shortcut Computation for the Thermal Management of a Large Air-Cooled Battery Pack
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
445
452
. 10.1016/j.applthermaleng.2014.02.040
6.
Jeon
,
D. H.
, and
Baek
,
S. M.
,
2011
, “
Thermal Modeling of Cylindrical Lithium Ion Battery During Discharge Cycle
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2973
2981
. 10.1016/j.enconman.2011.04.013
7.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J. Y.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
. 10.1016/j.applthermaleng.2015.07.033
8.
Yang
,
N. X.
,
Zhang
,
X. W.
,
Li
,
G. J.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
9.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
. 10.1016/j.jpowsour.2011.06.090
10.
Smith
,
J.
,
Hinterberger
,
M.
,
Hable
,
P.
, and
Koehler
,
J.
,
2014
, “
Simulative Method for Determining the Optimal Operating Conditions for a Cooling Plate for Lithium-Ion Battery Cell Modules
,”
J. Power Sources
,
267
, pp.
784
792
. 10.1016/j.jpowsour.2014.06.001
11.
Huang
,
Q. Q.
,
Li
,
X. X.
,
Zhang
,
G. Q.
,
Zhang
,
J. Y.
,
He
,
F. Q.
, and
Li
,
Y.
,
2018
, “
Experimental Investigation of the Thermal Performance of Heat Pipe Assisted Phase Change Material for Battery Thermal Management System
,”
Appl. Therm. Eng.
,
141
, pp.
1092
1100
. 10.1016/j.applthermaleng.2018.06.048
12.
Lai
,
Y. X.
,
Wu
,
W. X.
,
Chen
,
K.
,
Wang
,
S. F.
, and
Xin
,
C.
,
2019
, “
A Compact and Lightweight Liquid-Cooled Thermal Management Solution for Cylindrical Lithium-Ion Power Battery Pack
,”
Int. J. Heat Mass Transfer
,
144
, p.
118581
. 10.1016/j.ijheatmasstransfer.2019.118581
13.
Kizilel
,
R.
,
Lateef
,
A.
,
Sabbah
,
R.
,
Farid
,
M. M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Passive Control of Temperature Excursion and Uniformity in High-Energy Li-Ion Battery Packs at High Current and Ambient Temperature
,”
J. Power Sources
,
183
(
1
), pp.
370
375
. 10.1016/j.jpowsour.2008.04.050
14.
Ling
,
Z. Y.
,
Wang
,
F. X.
,
Fang
,
X. M.
,
Gao
,
X. N.
, and
Zhang
,
Z. G.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
15.
Liu
,
F. F.
,
Lan
,
F. C.
,
Chen
,
J. Q.
, and
Li
,
Y. G.
,
2018
, “
Experimental Investigation on Cooling/Heating Characteristics of Ultra-Thin Micro Heat Pipe for Electric Vehicle Battery Thermal Management
,”
Chin J. Mech. Eng.
,
31
(
1
), pp.
1
10
. 10.1186/s10033-018-0255-0
16.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J. Y.
, and
Wei
,
Z. B.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
17.
Peng
,
X. B.
,
Ma
,
C.
,
Garg
,
A.
,
Bao
,
N. S.
, and
Liao
,
X. P.
,
2019
, “
Thermal Performance Investigation of an Air-Cooled Lithium-Ion Battery Pack Considering the Inconsistency of Battery Cells
,”
Appl. Therm. Eng.
,
153
, pp.
596
603
. 10.1016/j.applthermaleng.2019.03.042
18.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
19.
Kim
,
N. H.
,
Ham
,
J. H.
, and
Ch
,
J. P.
,
2008
, “
Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Herringbone Wave Fins and Proposal of a New Heat Transfer and Pressure Drop Correlation
,”
J. Mech. Sci. Technol.
,
22
(
3
), pp.
545
555
. 10.1007/s12206-007-1116-4
20.
Chokeman
,
Y.
, and
Wongwises
,
S.
,
2005
, “
Effect of Fin Pattern on the Air-Side Performance of Herringbone Wavy Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer
,
41
(
7
), pp.
642
650
. 10.1007/s00231-004-0578-5
21.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
. 10.1002/er.1956
22.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy-Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
. 10.1149/1.2113792
23.
Inui
,
Y.
,
Kobayashi
,
Y.
,
Watanabe
,
Y.
,
Watase
,
Y.
, and
Kitamura
,
Y.
,
2007
, “
Simulation of Temperature Distribution in Cylindrical and Prismatic Lithium Ion Secondary Batteries
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2103
2109
. 10.1016/j.enconman.2006.12.012
24.
Kumar
,
S.
, and
Tien
,
C. L.
,
1990
, “
Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid-Film
,”
ASME J. Sol. Energy
,
112
(
4
), pp.
293
300
. 10.1115/1.2929937
25.
Li
,
W.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
Improved Collaboration Pursuing Method for Multidisciplinary Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
59
(
6
), pp.
1949
1968
. 10.1007/s00158-018-2165-2
26.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Considering Parameter and Metamodeling Uncertainties
,”
Eng. Comput.
, pp.
1
18
. 10.1007/s00366-020-01046-3
27.
Gould
,
K. A.
,
2016
, “
The Elements of Statistical Learning (2nd Edition): Data Mining, Inference, and Prediction
,”
Dimens. Crit. Care Nur.
,
35
(
1
), pp.
52
52
.
28.
Kang
,
F.
,
Xu
,
Q.
, and
Li
,
J. J.
,
2016
, “
Slope Reliability Analysis Using Surrogate Models Via New Support Vector Machines With Swarm Intelligence
,”
Appl. Math. Model.
,
40
(
11–12
), pp.
6105
6120
. 10.1016/j.apm.2016.01.050
29.
Navid
,
A.
,
Khalilarya
,
S.
, and
Abbasi
,
M.
,
2018
, “
Diesel Engine Optimization With Multi-Objective Performance Characteristics by Non-Evolutionary Nelder-Mead Algorithm: Sobol Sequence and Latin Hypercube Sampling Methods Comparison in DoE Process
,”
Fuel
,
228
, pp.
349
367
. 10.1016/j.fuel.2018.04.142
30.
Pebesma
,
E. J.
, and
Heuvelink
,
G. B. M.
,
1999
, “
Latin Hypercube Sampling of Gaussian Random Fields
,”
Technometrics
,
41
(
4
), pp.
303
312
. 10.1080/00401706.1999.10485930
31.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
. 10.1162/evco.1994.2.3.221
32.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evolut. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
You do not currently have access to this content.