Abstract

LiFePO4 (lithium iron phosphate (LFP)) is a promising cathode material due to its environmental friendliness, high cycling performance, and safety characteristics. On the basis of these advantages, many efforts have been devoted to increasing specific capacity and high-rate capacity to satisfy the requirement for next-generation batteries with higher energy density. However, the improvement of LFP capacity is mainly affected by dynamic factors such as low Li-ion diffusion coefficient and poor electrical conductivity. The electrical conductivity and the diffusion of lithium ions can be enhanced by using novel strategies such as surface modification, particle size reduction, and lattice substitution (doping), all of which lead to improved electrochemical performance. In addition, cathode prelithiation additives have been proved to be quite effective in improving initial capacity for full cell application. The aim of this review paper is to summarize the strategies of capacity enhancement, to discuss the effect of the cathode prelithiation additives on specific capacity, and to analyze how the features of LFP (including its structure and phase transformation reaction) influence electrochemical properties. Based on this literature data analysis, we gain an insight into capacity-enhancement strategies and provide perspectives for the further capacity development of LFP cathode material.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
. 10.1038/35104644
2.
Emani
,
S.
,
Liu
,
C.
,
Ashuri
,
M.
,
Sahni
,
K.
,
Wu
,
J.
,
Yang
,
W.
,
Németh
,
K.
, and
Shaw
,
L. L.
,
2019
, “
Li3BN2 as a Transition Metal Free, High Capacity Cathode for Li-Ion Batteries
,”
Chem. Electro. Chem.
,
6
(
2
), pp.
320
325
. 10.1002/celc.201801415
3.
Kraytsberg
,
A.
, and
Ein-eli
,
Y.
,
2012
, “
Higher, Stronger, Better … A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries
,”
Adv. Energy Mater
,
2
(
8
), pp.
922
939
. 10.1002/aenm.201200068
4.
Ren
,
W.
,
Wang
,
K.
,
Yang
,
J.
,
Tan
,
R.
,
Hu
,
J.
,
Guo
,
H.
,
Duan
,
Y.
,
Zheng
,
J.
,
Lin
,
Y.
, and
Pan
,
F.
,
2016
, “
Soft-Contact Conductive Carbon Enabling Depolarization of LiFePO4 Cathodes to Enhance Both Capacity and Rate Performances of Lithium Ion Batteries
,”
J. Power Sources
,
331
, pp.
232
239
. 10.1016/j.jpowsour.2016.09.049
5.
Zhu
,
Z.
,
Yu
,
D.
,
Yang
,
Y.
,
Su
,
C.
,
Huang
,
Y.
,
Dong
,
Y.
,
Waluyo
,
I.
,
Wang
,
B.
,
Hunt
,
A.
,
Yao
,
X.
,
Lee
,
J.
,
Xue
,
W.
, and
Li
,
J.
,
2019
, “
Gradient Li-Rich Oxide Cathode Particles Immunized Against Oxygen Release by a Molten Salt Treatment
,”
Nat. Energy
,
4
(
12
), pp.
1049
1058
. 10.1038/s41560-019-0508-x
6.
Lee
,
E. S.
,
Huq
,
A.
,
Chang
,
H. Y.
, and
Manthiram
,
A.
,
2012
, “
High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries
,”
Chem. Mater.
,
24
(
3
), pp.
600
612
. 10.1021/cm2034992
7.
Zhang
,
K.
,
Li
,
B.
,
Zuo
,
Y.
,
Song
,
J.
,
Shang
,
H.
,
Ning
,
F.
, and
Xia
,
D.
,
2019
, “
Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
,”
Electrochem. Energy Rev.
,
2
(
4
), pp.
606
623
. 10.1007/s41918-019-00049-z
8.
Eum
,
D.
,
Kim
,
B.
,
Kim
,
S. J.
,
Park
,
H.
,
Wu
,
J.
,
Cho
,
S.-P.
,
Yoon
,
G.
,
Lee
,
M. H.
,
Jung
,
S.-K.
,
Yang
,
W.
,
Seong
,
W. M.
,
Ku
,
K.
,
Tamwattana
,
O.
,
Park
,
S. K.
,
Hwang
,
I.
, and
Kang
,
K.
,
2020
, “
Voltage Decay and Redox Asymmetry Mitigation by Reversible Cation Migration in Lithium-Rich Layered Oxide Electrodes
,”
Nat. Mater.
,
19
. 10.1038/s41563-019-0572-4
9.
Chandan
,
P.
,
Chang
,
C. C.
,
Yeh
,
K. W.
,
Chiu
,
C. C.
,
Wu
,
D. Z.
,
Huang
,
T. W.
,
Wu
,
P. M.
,
Chi
,
P. W.
,
Hsu
,
W. F.
,
Su
,
K. H.
,
Lee
,
Y. W.
,
Chang
,
H. S.
,
Wang
,
M. J.
,
Wu
,
H. L.
,
Tang
,
H. Y.
, and
Wu
,
M. K.
,
2019
, “
Voltage Fade Mitigation in the Cationic Dominant Lithium-Rich NCM Cathode
,”
Commun. Chem.
,
2
(
1
), pp.
1
7
. 10.1038/s42004-019-0223-3
10.
Zou
,
W.
,
Xia
,
F. J.
,
Song
,
J. P.
,
Wu
,
L.
,
Chen
,
L. D.
,
Chen
,
H.
,
Liu
,
Y.
,
Dong
,
W.
,
Da
,
Wu
,
S. J.
,
Hu
,
Z. Y.
,
Liu
,
J.
,
Wang
,
H. E.
,
Chen
,
L. H.
,
Li
,
Y.
,
Peng
,
D. L.
, and
Su
,
B. L.
,
2019
, “
Probing and Suppressing Voltage Fade of Li-Rich Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Material for Lithium-Ion Battery
,”
Electrochim. Acta
,
318
, pp.
875
882
. 10.1016/j.electacta.2019.06.119
11.
Hu
,
E.
,
Yu
,
X.
,
Lin
,
R.
,
Bi
,
X.
,
Lu
,
J.
,
Bak
,
S.
,
Nam
,
K. W.
,
Xin
,
H. L.
,
Jaye
,
C.
,
Fischer
,
D. A.
,
Amine
,
K.
, and
Yang
,
X. Q.
,
2018
, “
Evolution of Redox Couples in Li- and Mn-Rich Cathode Materials and Mitigation of Voltage Fade by Reducing Oxygen Release
,”
Nat. Energy
,
3
(
8
), pp.
690
698
. 10.1038/s41560-018-0207-z
12.
Hu
,
E.
,
Lyu
,
Y.
,
Xin
,
H. L.
,
Liu
,
J.
,
Han
,
L.
,
Bak
,
S. M.
,
Bai
,
J.
,
Yu
,
X.
,
Li
,
H.
, and
Yang
,
X. Q.
,
2016
, “
Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes
,”
Nano Lett.
,
16
(
10
), pp.
5999
6007
. 10.1021/acs.nanolett.6b01609
13.
Liu
,
D.
,
Fan
,
X.
,
Li
,
Z.
,
Liu
,
T.
,
Sun
,
M.
,
Qian
,
C.
,
Ling
,
M.
,
Liu
,
Y.
, and
Liang
,
C.
,
2019
, “
A Cation/Anion Co-Doped Li 1.12 Na 0.08 Ni 0.2 Mn 0.6 O 1.95 F 0.05 Cathode for Lithium Ion Batteries
,”
Nano Energy
,
58
, pp.
786
796
. 10.1016/j.nanoen.2019.01.080
14.
Wang
,
Z.
,
Yin
,
Y.
,
Ren
,
Y.
,
Wang
,
Z.
,
Gao
,
M.
,
Ma
,
T.
,
Zhuang
,
W.
,
Lu
,
S.
,
Fan
,
A.
,
Amine
,
K.
, and
Chen
,
Z.
,
2017
, “
High Performance Lithium-Manganese-Rich Cathode Material With Reduced Impurities
,”
Nano Energy
,
31
(
2
), pp.
247
257
. 10.1016/j.nanoen.2016.10.014
15.
Nayak
,
P. K.
,
Grinblat
,
J.
,
Levi
,
M.
,
Levi
,
E.
,
Kim
,
S.
,
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries
,”
Adv. Energy Mater.
,
6
(
8
), pp.
1
13
. 10.1002/aenm.201502398
16.
Thackeray
,
M. M.
,
Kang
,
S. H.
,
Johnson
,
C. S.
,
Vaughey
,
J. T.
,
Benedek
,
R.
, and
Hackney
,
S. A.
,
2007
, “
Li2 MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries
,”
J. Mater. Chem.
,
17
(
30
), pp.
3112
3125
. 10.1039/b702425h
17.
Zheng
,
J.
,
Myeong
,
S.
,
Cho
,
W.
,
Yan
,
P.
,
Xiao
,
J.
,
Wang
,
C.
,
Cho
,
J.
, and
Zhang
,
J. G.
,
2017
, “
Li- and Mn-Rich Cathode Materials: Challenges to Commercialization
,”
Adv. Energy Mater.
,
7
(
6
), p.
1601284
. 10.1002/aenm.201601284
18.
Xie
,
Y.
,
Jin
,
Y.
, and
Xiang
,
L.
,
2019
, “
Tuning the Nanoarea Interfacial Properties for the Improved Performance of Li-Rich Polycrystalline Li-Mn-O Spinel
,”
ACS Appl. Mater. Interfaces
,
11
(
16
), pp.
14796
14802
. 10.1021/acsami.9b01651
19.
Bruce
,
P. G.
,
Freunberger
,
S. A.
,
Hardwick
,
L. J.
, and
Tarascon
,
J. M.
,
2012
, “
LigO2 and LigS Batteries with High Energy Storage
,”
Nat. Mater.
,
11
(
1
), pp.
19
29
. 10.1038/nmat3191
20.
Manthiram
,
A.
,
Fu
,
Y.
, and
Su
,
Y. S.
,
2013
, “
Challenges and Prospects of Lithium-Sulfur Batteries
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1125
1134
. 10.1021/ar300179v
21.
Yao
,
H.
,
Zheng
,
G.
,
Hsu
,
P. C.
,
Kong
,
D.
,
Cha
,
J. J.
,
Li
,
W.
,
Seh
,
Z. W.
,
McDowell
,
M. T.
,
Yan
,
K.
,
Liang
,
Z.
,
Narasimhan
,
V. K.
, and
Cui
,
Y.
,
2014
, “
Improving Lithium-Sulphur Batteries Through Spatial Control of Sulphur Species Deposition on a Hybrid Electrode Surface
,”
Nat. Commun.
,
5
, pp.
1
9
. 10.1038/ncomms4943
22.
Chen
,
L.
,
Liu
,
Y.
,
Ashuri
,
M.
,
Liu
,
C.
, and
Shaw
,
L. L.
,
2014
, “
Li2S Encapsulated by Nitrogen-Doped Carbon for Lithium Sulfur Batteries
,”
J. Mater. Chem. A
,
2
(
42
), pp.
18026
18032
. 10.1039/C4TA04103H
23.
Chen
,
L.
,
Dietz Rago
,
N. L.
,
Bloom
,
I. D.
, and
Shaw
,
L. L.
,
2016
, “
New Insights Into the Electrode Mechanism of Lithium Sulfur Batteries: Via Air-Free Post-Test Analysis
,”
Chem. Commun.
,
52
(
64
), pp.
9913
9916
. 10.1039/C6CC04401H
24.
Chen
,
S.
,
Tang
,
Q.
,
Chen
,
X.
, and
Tan
,
L.
,
2015
, “
Nitrogen-Doped Carbon Coated LiFePO4/Carbon Nanotube Interconnected Nanocomposites for High Performance Lithium Ion Batteries
,”
New J. Chem.
,
39
(
12
), pp.
9782
9788
. 10.1039/C5NJ02090E
25.
Ouyang
,
C.
,
Shi
,
S.
,
Wang
,
Z.
,
Huang
,
X.
, and
Chen
,
L.
,
2004
, “
First-Principles Study of Li Ion Diffusion in LiFePO4
,”
Phys. Rev. B
,
69
(
10
), p.
104303
. 10.1103/PhysRevB.69.104303
26.
Dathar
,
G. K. P.
,
Sheppard
,
D.
,
Stevenson
,
K. J.
, and
Henkelman
,
G.
,
2011
, “
Calculations of Li-Ion Diffusion in Olivine Phosphates
,”
Chem. Mater.
,
23
(
17
), pp.
4032
4037
. 10.1021/cm201604g
27.
Ellis
,
B. L.
,
Makahnouk
,
W. R. M.
,
Makimura
,
Y.
,
Toghill
,
K.
, and
Nazar
,
L. F.
,
2007
, “
A Multifunctional 3.5 V Iron-Based Phosphate Cathode for Rechargeable Batteries
,”
Nat. Mater.
,
6
(
10
), pp.
749
753
. 10.1038/nmat2007
28.
Zhao
,
Q.
,
Zhang
,
Y.
,
Meng
,
Y.
,
Wang
,
Y.
,
Ou
,
J.
,
Guo
,
Y.
, and
Xiao
,
D.
,
2017
, “
Phytic Acid Derived LiFePO4 Beyond Theoretical Capacity as High-Energy Density Cathode for Lithium Ion Battery
,”
Nano Energy
,
34
(
December 2016
), pp.
408
420
. 10.1016/j.nanoen.2017.03.006
29.
Hu
,
L.-H.
,
Wu
,
B.
,
Lin
,
F. Y.
,
Te
,
C.
,
Khlobystov
,
A. N.
, and
Li
,
L. J.
,
2013
, “
Graphene-Modified LiFePO4 Cathode for Lithium Ion Battery Beyond Theoretical Capacity
,”
Nat. Commun.
,
4
(
1
), p.
1687
. 10.1038/ncomms2705
30.
Li
,
L.
,
Wu
,
L.
,
Wu
,
F.
,
Song
,
S.
,
Zhang
,
X.
,
Fu
,
C.
,
Yuan
,
D.
, and
Xiang
,
Y.
,
2017
, “
Review—Recent Research Progress in Surface Modification of LiFePO4 Cathode Materials
,”
J. Electrochem. Soc.
,
164
(
9
), pp.
A2138
A2150
. 10.1149/2.1571709jes
31.
Islam
,
M. S.
,
Driscoll
,
D. J.
,
Fisher
,
C. A. J.
,
Slater
,
P. R.
,
Group
,
M. C.
,
Di
,
V,C
,
Uni
,
V.
,
Gu
,
G.
, and
Kingdom
,
U.
,
2005
, “
Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material
,”
Chem. Mater.
,
17
(
11
), pp.
5085
5092
. 10.1021/cm050999v
32.
Kuenzel
,
M.
,
Porhiel
,
R.
,
Bresser
,
D.
,
Asenbauer
,
J.
,
Axmann
,
P.
,
Wohlfahrt-Mehrens
,
M.
, and
Passerini
,
S.
,
2019
, “
Deriving Structure-Performance Relations of Chemically Modified Chitosan Binders for Sustainable High-Voltage LiNi0.5Mn1.5O4 Cathodes
,”
Batter. Supercaps
,
3
(
2
), pp.
155
164
. 10.1002/batt.201900140
33.
Ning
,
F.
,
Li
,
S.
,
Xu
,
B.
, and
Ouyang
,
C.
,
2014
, “
Strain Tuned Li Diffusion in LiCoO2 Material for Li Ion Batteries: A First Principles Study
,”
Solid State Ionics
,
263
, pp.
46
48
. 10.1016/j.ssi.2014.05.008
34.
Kang
,
K.
,
Meng
,
Y. S.
,
Bréger
,
J.
,
Grey
,
C. P.
, and
Ceder
,
G.
,
2006
, “
Electrodes With High Power and High Capacity for Rechargeable Lithium Batteries
,”
Science
,
311
(
5763
), pp.
977
980
. 10.1126/science.1122152
35.
Lee
,
S.
, and
Park
,
S. S.
,
2012
, “
Atomistic Simulation Study of Mixed-Metal Oxide (LiNi 1/3Co 1/3Mn 1/3O 2) Cathode Material for Lithium Ion Battery
,”
J. Phys. Chem. C
,
116
(
10
), pp.
6484
6489
. 10.1021/jp2122467
36.
Goodenough
,
J. B.
,
1994
, “
Design Considerations
,”
Solid State Ionics
,
69
(
3–4
), pp.
184
198
. 10.1016/0167-2738(94)90409-X
37.
Wang
,
J.
, and
Sun
,
X.
,
2012
, “
Understanding and Recent Development of Carbon Coating on LiFePO4 Cathode Materials for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5163
5185
. 10.1039/C1EE01263K
38.
Fang
,
H.
,
Pan
,
Z.
,
Li
,
L.
,
Yang
,
Y.
,
Yan
,
G.
,
Li
,
G.
, and
Wei
,
S.
,
2008
, “
The Possibility of Manganese Disorder in LiMnPO4 and Its Effect on the Electrochemical Activity
,”
Electrochem. Commun.
,
10
(
7
), pp.
1071
1073
. 10.1016/j.elecom.2008.05.010
39.
Yang
,
Z.
,
Dai
,
Y.
,
Wang
,
S.
, and
Yu
,
J.
,
2016
, “
How to Make Lithium Iron Phosphate Better: A Review Exploring Classical Modification Approaches In-Depth and Proposing Future Optimization Methods
,”
J. Mater. Chem. A
,
4
(
47
), pp.
18210
18222
. 10.1039/C6TA05048D
40.
Gao
,
C.
,
Zhou
,
J.
,
Liu
,
G.
, and
Wang
,
L.
,
2018
, “
Lithium-Ions Diffusion Kinetic in LiFePO4/Carbon Nanoparticles Synthesized by Microwave Plasma Chemical Vapor Deposition for Lithium-Ion Batteries
,”
Appl. Surf. Sci.
,
433
, pp.
35
44
. 10.1016/j.apsusc.2017.10.034
41.
Srinivasan
,
V.
, and
Newman
,
J.
,
2004
, “
Discharge Model for the Lithium Iron-Phosphate Electrode
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1517
A1529
. 10.1149/1.1785012
42.
Andersson
,
A.
, and
Thomas
,
J.
,
2001
, “
The Source of First-Cycle Capacity Loss in LiFePO4
,”
J. Power Sources
,
97–98
, pp.
498
502
. 10.1016/S0378-7753(01)00633-4
43.
Laffont
,
L.
,
Delacourt
,
C.
,
Gibot
,
P.
,
Wu
,
M. Y.
,
Kooyman
,
P.
,
Masquelier
,
C.
, and
Tarascon
,
J. M.
,
2006
, “
Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy
,”
Chem. Mater.
,
18
(
23
), pp.
5520
5529
. 10.1021/cm0617182
44.
Delmas
,
C.
,
Maccario
,
M.
,
Croguennec
,
L.
,
Le Cras
,
F.
, and
Weill
,
F.
,
2008
, “
Lithium Deintercalation in LiFePO4 Nanoparticles via a Domino-Cascade Model
,”
Nat. Mater.
,
7
(
8
), pp.
665
671
. 10.1038/nmat2230
45.
Lachal
,
M.
,
Bouchet
,
R.
,
Boulineau
,
A.
,
Surblé
,
S.
,
Rossignol
,
C.
,
Alloin
,
F.
, and
Obbade
,
S.
,
2017
, “
Remarkable Impact of Grains Boundaries on the Chemical Delithiation Kinetics of LiFePO4
,”
Solid State Ionics
,
300
, pp.
187
194
. 10.1016/j.ssi.2016.12.010
46.
Calderón
,
C. A.
,
Thomas
,
J. E.
,
Lener
,
G.
,
Barraco
,
D. E.
, and
Visintin
,
A.
,
2017
, “
Electrochemical Comparison of LiFePO4 Synthesized by a Solid-State Method Using Either Microwave Heating or a Tube Furnace
,”
J. Appl. Electrochem.
,
47
(
10
), pp.
1179
1188
. 10.1007/s10800-017-1111-0
47.
Yuan
,
L.
,
Wang
,
Z.
,
Zhang
,
W.
,
Hu
,
X.
,
Chen
,
J.
, and
Huang
,
Y.
,
2011
, “
Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
(
2
), pp.
269
284
. 10.1039/c0ee00029a
48.
Kulka
,
A.
,
Walczak
,
K.
,
Zając
,
W.
, and
Molenda
,
J.
,
2017
, “
Effect of Reducing Agents on Low-Temperature Synthesis of Nanostructured LiFePO4
,”
J. Solid State Chem.
,
253
, pp.
367
374
. 10.1016/j.jssc.2017.06.022
49.
Su
,
J.
,
Wu
,
X. L.
,
Yang
,
C. P.
,
Lee
,
J. S.
,
Kim
,
J.
, and
Guo
,
Y. G.
,
2012
, “
Self-Assembled LiFePO4/C Nano/Microspheres by Using Phytic Acid as Phosphorus Source
,”
J. Phys. Chem. C
,
116
(
8
), pp.
5019
5024
. 10.1021/jp212063e
50.
Chen
,
M.
,
Wang
,
X.
,
Shu
,
H.
,
Yu
,
R.
,
Yang
,
X.
, and
Huang
,
W.
,
2015
, “
Solvothermal Synthesis of Monodisperse Micro-Nanostructure Starfish-Like Porous LiFePO4 as Cathode Material for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
652
, pp.
213
219
. 10.1016/j.jallcom.2015.08.221
51.
Yoo
,
J. W.
,
Zhang
,
K.
,
Patil
,
V.
,
Lee
,
J. T.
,
Jung
,
D.-W.
,
Pu
,
L. S.
,
Oh
,
W.
,
Yoon
,
W.-S.
,
Park
,
J. H.
, and
Yi
,
G.-R.
,
2018
, “
Porous Supraparticles of LiFePO4 Nanorods With Carbon for High Rate Li-Ion Batteries
,”
Mater. Express
,
8
(
4
), pp.
316
324
. 10.1166/mex.2018.1443
52.
Huang
,
X.
,
He
,
X.
,
Jiang
,
C.
,
Tian
,
G.
, and
Liu
,
Y.
,
2017
, “
Reaction Mechanisms on Solvothermal Synthesis of Nano LiFePO4 Crystals and Defect Analysis
,”
Ind. Eng. Chem. Res.
,
56
(
38
), pp.
10648
10657
. 10.1021/acs.iecr.7b02009
53.
Ma
,
Z.
,
Shao
,
G.
,
Fan
,
Y.
,
Wang
,
G.
,
Song
,
J.
, and
Liu
,
T.
,
2014
, “
Tunable Morphology Synthesis of LiFePO4 Nanoparticles as Cathode Materials for Lithium Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
12
), pp.
9236
9244
. 10.1021/am501373h
54.
Huang
,
X.
,
Yao
,
Y.
,
Liang
,
F.
, and
Dai
,
Y.
,
2018
, “
Concentration-Controlled Morphology of LiFePO4 Crystals With an Exposed (100) Facet and Their Enhanced Performance for Use in Lithium-Ion Batteries
,”
J. Alloys Compd.
,
743
, pp.
763
772
. 10.1016/j.jallcom.2018.02.048
55.
Zhao
,
Y.
,
Peng
,
L.
,
Liu
,
B.
, and
Yu
,
G.
,
2014
, “
Single-Crystalline LiFePO4 Nanosheets for High-Rate Li-Ion Batteries
,”
Nano Lett.
,
14
(
5
), pp.
2849
2853
. 10.1021/nl5008568
56.
Huang
,
X.
,
He
,
X.
,
Jiang
,
C.
, and
Tian
,
G.
,
2014
, “
Morphology Evolution and Impurity Analysis of LiFePO4 Nanoparticles via a Solvothermal Synthesis Process
,”
Rsc Adv.
,
4
(
99
), pp.
56074
56083
. 10.1039/C4RA09484K
57.
Li
,
Z.
,
Peng
,
Z.
,
Zhang
,
H.
,
Hu
,
T.
,
Hu
,
M.
,
Zhu
,
K.
, and
Wang
,
X.
,
2016
, “
[100]-Oriented LiFePO4 Nanoflakes Toward High Rate Li-Ion Battery Cathode
,”
Nano Lett.
,
16
(
1
), pp.
795
799
. 10.1021/acs.nanolett.5b04855
58.
Zheng
,
Z.
,
Pang
,
W. K.
,
Tang
,
X.
,
Jia
,
D.
,
Huang
,
Y.
, and
Guo
,
Z.
,
2015
, “
Solvothermal Synthesis and Electrochemical Performance of Hollow LiFePO4 Nanoparticles
,”
J. Alloys Compd.
,
640
, pp.
95
100
. 10.1016/j.jallcom.2015.04.007
59.
Yang
,
S.
,
Hu
,
M.
,
Xi
,
L.
,
Ma
,
R.
,
Dong
,
Y.
, and
Chung
,
C. Y.
,
2013
, “
Solvothermal Synthesis of Monodisperse LiFePO4 Micro Hollow Spheres as High Performance Cathode Material for Lithium Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
5
(
18
), pp.
8961
8967
. 10.1021/am401990b
60.
Wang
,
B.
,
Xie
,
Y.
,
Liu
,
T.
,
Luo
,
H.
,
Wang
,
B.
,
Wang
,
C.
,
Wang
,
L.
,
Wang
,
D.
,
Dou
,
S.
, and
Zhou
,
Y.
,
2017
, “
LiFePO4 Quantum-Dots Composite Synthesized by a General Microreactor Strategy for Ultra-High-Rate Lithium Ion Batteries
,”
Nano Energy
,
42
(
August
), pp.
363
372
. 10.1016/j.nanoen.2017.11.040
61.
Zhang
,
X.
,
Bi
,
Z.
,
He
,
W.
,
Yang
,
G.
,
Liu
,
H.
, and
Yue
,
Y.
,
2014
, “
Fabricating High-Energy Quantum Dots in Ultra-Thin LiFePO4 Nanosheets Using a Multifunctional High-Energy Biomolecule—ATP
,”
Energy Environ. Sci.
,
7
(
7
), pp.
2285
2294
. 10.1039/C3EE44187C
62.
Gao
,
L.
,
Xu
,
Z.
, and
Zhang
,
S.
,
2018
, “
The Co-Doping Effects of Zr and Co on Structure and Electrochemical Properties of LiFePO4 Cathode Materials
,”
J. Alloys Compd.
,
739
, pp.
529
535
. 10.1016/j.jallcom.2017.12.313
63.
Dhaybi
,
S.
,
Marsan
,
B.
, and
Hammami
,
A.
,
2018
, “
A Novel Low-Cost and Simple Colloidal Route for Preparing High-Performance Carbon-Coated LiFePO4 for Lithium Batteries
,”
J. Energy Storage
,
18
, pp.
259
265
. 10.1016/j.est.2018.05.009
64.
Cuisinier
,
M.
,
Dupré
,
N.
,
Moreau
,
P.
, and
Guyomard
,
D.
,
2013
, “
NMR Monitoring of Electrode/Electrolyte Interphase in the Case of Air-Exposed and Carbon Coated LiFePO4
,”
J. Power Sources
,
243
, pp.
682
690
. 10.1016/j.jpowsour.2013.06.042
65.
Zhang
,
Y.
,
Huo
,
Q. Y.
,
Du
,
P. P.
,
Wang
,
L. Z.
,
Zhang
,
A. Q.
,
Song
,
Y. H.
,
Lv
,
Y.
, and
Li
,
G. Y.
,
2012
, “
Advances in New Cathode Material LiFePO4 for Lithium-Ion Batteries
,”
Synth. Met.
,
162
(
13–14
), pp.
1315
1326
. 10.1016/j.synthmet.2012.04.025
66.
Jugović
,
D.
, and
Uskoković
,
D.
,
2009
, “
A Review of Recent Developments in the Synthesis Procedures of Lithium Iron Phosphate Powders
,”
J. Power Sources
,
190
(
2
), pp.
538
544
. 10.1016/j.jpowsour.2009.01.074
67.
Liu
,
H.
,
Li
,
C.
,
Zhang
,
H. P.
,
Fu
,
L. J.
,
Wu
,
Y. P.
, and
Wu
,
H. Q.
,
2006
, “
Kinetic Study on LiFePO4/C Nanocomposites Synthesized by Solid State Technique
,”
J. Power Sources
,
159
(
1 Spec. Iss.
), pp.
717
720
. 10.1016/j.jpowsour.2005.10.098
68.
Rao
,
Y.
,
Wang
,
K.
, and
Zeng
,
H.
,
2015
, “
The Effect of Phenol–Formaldehyde Resin on the Electrochemical Properties of Carbon-Coated LiFePO4 Materials in Pilot Scale
,”
Ionics (Kiel)
,
21
(
6
), pp.
1525
1531
. 10.1007/s11581-014-1330-x
69.
Nguyen
,
V. H.
, and
Gu
,
H.-B.
,
2014
, “
LiFePO4 Batteries With Enhanced Lithium-Ion-Diffusion Ability Due to Graphene Addition
,”
J. Appl. Electrochem.
,
44
(
10
), pp.
1153
1163
. 10.1007/s10800-014-0717-8
70.
Liu
,
N.
,
Gao
,
M.
,
Li
,
Z.
,
Li
,
C.
,
Wang
,
W.
,
Zhang
,
H.
,
Yu
,
Z.
, and
Huang
,
Y.
,
2014
, “
Effect of Gelatin Concentration on the Synthetize of the LiFePO4/C Composite for Lithium Ion Batteries
,”
J. Alloys Compd.
,
599
, pp.
127
130
. 10.1016/j.jallcom.2014.02.020
71.
Meng
,
Y.
,
Liu
,
H.
,
Xu
,
Q.
,
Zhang
,
X.
,
Tang
,
Z.
, and
Miao
,
C.
,
2014
, “
Effect of Graphene Nanosheets Content on the Morphology and Electrochemical Performance of LiFePO4 Particles in Lithium Ion Batteries
,”
Electrochim. Acta
,
135
, pp.
311
318
. 10.1016/j.electacta.2014.05.028
72.
Ding
,
B.
,
Ji
,
G.
,
Sha
,
Z.
,
Wu
,
J.
,
Lu
,
L.
, and
Lee
,
J. Y.
,
2015
, “
Dual-Carbon Network for the Effective Transport of Charged Species in a LiFePO4 Cathode for Lithium-Ion Batteries
,”
Energy Technol.
,
3
(
1
), pp.
63
69
. 10.1002/ente.201402117
73.
Jiang
,
G.
,
Hu
,
Z.
,
Xiong
,
J.
,
Zhu
,
X.
, and
Yuan
,
S.
,
2018
, “
Enhanced Performance of LiFePO4 Originating From the Synergistic Effect of Graphene Modification and Carbon Coating
,”
J. Alloys Compd.
,
767
, pp.
528
537
. 10.1016/j.jallcom.2018.07.078
74.
Zhang
,
J.
,
Nie
,
N.
,
Liu
,
Y.
,
Wang
,
J.
,
Yu
,
F.
,
Gu
,
J.
, and
Li
,
W.
,
2015
, “
Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
7
(
36
), pp.
20134
20143
. 10.1021/acsami.5b05398
75.
Ma
,
Z.
,
Peng
,
Y.
,
Wang
,
G.
,
Fan
,
Y.
,
Song
,
J.
,
Liu
,
T.
,
Qin
,
X.
, and
Shao
,
G.
,
2015
, “
Enhancement of Electrochemical Performance for LiFePO4 Cathodes via Hybrid Coating With Electron Conductor Carbon and Lithium Ion Conductor LaPO4
,”
Electrochim. Acta
,
156
, pp.
77
85
. 10.1016/j.electacta.2015.01.015
76.
Lei
,
X.
,
Zhang
,
H.
,
Chen
,
Y.
,
Wang
,
W.
,
Ye
,
Y.
,
Zheng
,
C.
,
Deng
,
P.
, and
Shi
,
Z.
,
2015
, “
A Three-Dimensional LiFePO4/Carbon Nanotubes/Graphene Composite as a Cathode Material for Lithium-Ion Batteries With Superior High-Rate Performance
,”
J. Alloys Compd.
,
626
, pp.
280
286
. 10.1016/j.jallcom.2014.09.169
77.
Meng
,
Y.
,
Xia
,
J.
,
Wang
,
L.
,
Wang
,
G.
,
Zhu
,
F.
, and
Zhang
,
Y.
,
2018
, “
A Comparative Study on LiFePO4/C by In-Situ Coating With Different Carbon Sources for High-Performance Lithium Batteries
,”
Electrochim. Acta
,
261
, pp.
96
103
. 10.1016/j.electacta.2017.12.127
78.
Yi
,
X.
,
Zhang
,
F.
,
Zhang
,
B.
,
Yu
,
W. J.
,
Dai
,
Q.
,
Hu
,
S.
,
He
,
W.
,
Tong
,
H.
,
Zheng
,
J.
, and
Liao
,
J.
,
2018
, “
(010) Facets Dominated LiFePO4 Nano-Flakes Confined in 3D Porous Graphene Network as a High-Performance Li-Ion Battery Cathode
,”
Ceram. Int.
,
44
(
15
), pp.
18181
18188
. 10.1016/j.ceramint.2018.07.026
79.
Wang
,
J.
,
Gu
,
Y. J.
,
Kong
,
W. L.
,
Liu
,
H. Q.
,
Chen
,
Y. B.
, and
Liu
,
W.
,
2018
, “
Effect of Carbon Coating on the Crystal Orientation and Electrochemical Performance of Nanocrystalline LiFePO4
,”
Solid State Ionics
,
327
, pp.
11
17
. 10.1016/j.ssi.2018.10.015
80.
Mollazadeh
,
M.
, and
Habibi
,
B.
,
2019
, “
LiFePO4/Carbon/Reduced Graphene Oxide Nanostructured Composite as a High Capacity and Fast Rate Cathode Material for Rechargeable Lithium Ion Battery
,”
Catal. Letters
,
149
(
1
), pp.
7
18
. 10.1007/s10562-018-2589-8
81.
Zhou
,
S.
,
Zheng
,
X.
,
Shen
,
J.
,
Zhu
,
Q.
,
Xu
,
B.
,
Guan
,
Y.
, and
Wei
,
X.
,
2018
, “
LiFePO4/Activated Carbon/Graphene Composite With Capacitive-Battery Characteristics for Superior High-Rate Lithium-Ion Storage
,”
Electrochim. Acta
,
294
, pp.
148
155
.
82.
Cao
,
Z.
,
Zhu
,
G.
,
Zhang
,
R.
,
Chen
,
S.
,
Sang
,
M.
,
Jia
,
J.
,
Yang
,
M.
,
Li
,
X.
, and
Yang
,
S.
,
2018
, “
Biological Phytic Acid Guided Formation of Monodisperse Large-Sized Carbon@LiFePO4/Graphene Composite Microspheres for High-Performance Lithium-Ion Battery Cathodes
,”
Chem. Eng. J.
,
351
, pp.
382
390
. 10.1016/j.cej.2018.06.073
83.
Zhang
,
K.
,
Lee
,
J. T.
,
Li
,
P.
,
Kang
,
B.
,
Kim
,
J. H.
,
Yi
,
G. R.
, and
Park
,
J. H.
,
2015
, “
Conformal Coating Strategy Comprising N-Doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4
,”
Nano Lett.
,
15
(
10
), pp.
6756
6763
. 10.1021/acs.nanolett.5b02604
84.
Pratheeksha
,
P. M.
,
Mohan
,
E. H.
,
Sarada
,
B. V.
,
Ramakrishna
,
M.
,
Hembram
,
K.
,
Srinivas
,
P. V. V.
,
Daniel
,
P. J.
,
Rao
,
T. N.
, and
Anandan
,
S.
,
2017
, “
Development of a Novel Carbon-Coating Strategy for Producing Core-Shell Structured Carbon Coated LiFePO4 for an Improved Li-Ion Battery Performance
,”
Phys. Chem. Chem. Phys.
,
19
(
1
), pp.
175
188
. 10.1039/C6CP06923A
85.
Sun
,
L.
,
Deng
,
Q.
,
Fang
,
B.
,
Li
,
Y.
,
Deng
,
L.
,
Yang
,
B.
,
Ren
,
X.
, and
Zhang
,
P.
,
2016
, “
Carbon-Coated LiFePO4 Synthesized by a Simple Solvothermal Method
,”
CrystEngComm
,
18
(
39
), pp.
7537
7543
. 10.1039/C6CE01681B
86.
Miao
,
C.
,
Bai
,
P.
,
Jiang
,
Q.
,
Sun
,
S.
, and
Wang
,
X.
,
2014
, “
A Novel Synthesis and Characterization of LiFePO4 and LiFePO4/C as a Cathode Material for Lithium-Ion Battery
,”
J. Power Sources
,
246
, pp.
232
238
. 10.1016/j.jpowsour.2013.07.077
87.
Bazzi
,
K.
,
Nazri
,
M.
,
Naik
,
V. M.
,
Garg
,
V. K.
,
Oliveira
,
A. C.
,
Vaishnava
,
P. P.
,
Nazri
,
G. A.
, and
Naik
,
R.
,
2016
, “
Enhancement of Electrochemical Behavior of Nanostructured LiFePO4/Carbon Cathode Material With Excess Li
,”
J. Power Sources
,
306
, pp.
17
23
. 10.1016/j.jpowsour.2015.11.086
88.
Wu
,
G.
,
Liu
,
N.
,
Gao
,
X.
,
Tian
,
X.
,
Zhu
,
Y.
,
Zhou
,
Y.
, and
Zhu
,
Q.
,
2018
, “
A Hydrothermally Synthesized LiFePO4/C Composite With Superior Low-Temperature Performance and Cycle Life
,”
Appl. Surf. Sci.
,
435
, pp.
1329
1336
. 10.1016/j.apsusc.2017.11.276
89.
Fathollahi
,
F.
,
Javanbakht
,
M.
,
Omidvar
,
H.
, and
Ghaemi
,
M.
,
2015
, “
Improved Electrochemical Properties of LiFePO4/Graphene Cathode Nanocomposite Prepared by One-Step Hydrothermal Method
,”
J. Alloys Compd.
,
627
, pp.
146
152
. 10.1016/j.jallcom.2014.12.025
90.
Wang
,
B.
,
Liu
,
T.
,
Liu
,
A.
,
Liu
,
G.
,
Wang
,
L.
,
Gao
,
T.
,
Wang
,
D.
, and
Zhao
,
X. S.
,
2016
, “
A Hierarchical Porous C@LiFePO4/Carbon Nanotubes Microsphere Composite for High-Rate Lithium-Ion Batteries: Combined Experimental and Theoretical Study
,”
Adv. Energy Mater.
,
6
(
16
), pp.
1
10
. 10.1002/aenm.201600426
91.
Rajoba
,
S. J.
,
Jadhav
,
L. D.
,
Kalubarme
,
R. S.
,
Patil
,
P. S.
,
Varma
,
S.
, and
Wani
,
B. N.
,
2018
, “
Electrochemical Performance of LiFePO4/GO Composite for Li-Ion Batteries
,”
Ceram. Int.
,
44
(
6
), pp.
6886
6893
. 10.1016/j.ceramint.2018.01.114
92.
Wang
,
Y.
,
Feng
,
Z. S.
,
Chen
,
J. J.
, and
Zhang
,
C.
,
2012
, “
Synthesis and Electrochemical Performance of LiFePO4/Graphene Composites by Solid-State Reaction
,”
Mater. Lett.
,
71
, pp.
54
56
. 10.1016/j.matlet.2011.12.034
93.
Quan
,
W.
,
Tang
,
Z.
,
Zhang
,
J.
, and
Zhang
,
Z.
,
2014
, “
Enhanced Properties of LiFePO4/C Cathode Materials Modified by CePO4 Nanoparticles
,”
Mater. Chem. Phys.
,
147
(
1–2
), pp.
333
338
. 10.1016/j.matchemphys.2014.05.008
94.
Wang
,
X.
,
Feng
,
Z.
,
Huang
,
J.
,
Deng
,
W.
,
Li
,
X.
,
Zhang
,
H.
, and
Wen
,
Z.
,
2018
, “
Graphene-Decorated Carbon-Coated LiFePO4 Nanospheres as a High-Performance Cathode Material for Lithium-Ion Batteries
,”
Carbon N. Y.
,
127
, pp.
149
157
. 10.1016/j.carbon.2017.10.101
95.
Chen
,
Y. T.
,
Zhang
,
H. Y.
,
Chen
,
Y. M.
,
Qin
,
G.
,
Lei
,
X. L.
, and
Liu
,
L. Y.
,
2018
, “
Graphene-Carbon Nanotubes-Modified LiFePO4 Cathode Materials for High-Performance Lithium-Ion Batteries
,”
Mater. Sci. Forum
,
913
, pp.
818
830
. 10.4028/www.scientific.net/MSF.913.818
96.
Zhang
,
J.
,
Wang
,
J.
,
Liu
,
Y.
,
Nie
,
N.
,
Gu
,
J.
,
Yu
,
F.
, and
Li
,
W.
,
2015
, “
High-Performance Lithium Iron Phosphate With Phosphorus-Doped Carbon Layers for Lithium Ion Batteries
,”
J. Mater. Chem. A
,
3
(
5
), pp.
2043
2049
. 10.1039/C4TA05186F
97.
Feng
,
J.
, and
Wang
, Y.
,
2016
, “
High-Rate and Ultralong Cycle-Life LiFePO4 Nanocrystals Coated by Boron-Doped Carbon as Positive Electrode for Lithium-Ion Batteries
,”
Appl. Surf. Sci.
,
390
, pp.
481
488
. 10.1016/j.apsusc.2016.08.066
98.
Han
,
B.
,
Meng
,
X.
,
Ma
,
L.
, and
Nan
,
J.
,
2016
, “
Nitrogen-Doped Carbon Decorated LiFePO4 Composite Synthesized via a Microwave Heating Route Using Polydopamine as Carbon-Nitrogen Precursor
,”
Ceram. Int.
,
42
(
2
), pp.
2789
2797
. 10.1016/j.ceramint.2015.11.011
99.
Xiong
,
Q. Q.
,
Lou
,
J. J.
,
Teng
,
X. J.
,
Lu
,
X. X.
,
Liu
,
S. Y.
,
Chi
,
H. Z.
, and
Ji
,
Z. G.
,
2018
, “
Controllable Synthesis of N-C@LiFePO4 Nanospheres as Advanced Cathode of Lithium Ion Batteries
,”
J. Alloys Compd.
,
743
, pp.
377
382
. 10.1016/j.jallcom.2018.01.350
100.
Wang
,
X.
,
Feng
,
Z.
,
Hou
,
X.
,
Liu
,
L.
,
He
,
M.
,
He
,
X.
,
Huang
,
J.
, and
Wen
,
Z.
,
2020
, “
Fluorine Doped Carbon Coating of LiFePO4 as a Cathode Material for Lithium-Ion Batteries
,”
Chem. Eng. J.
,
379
, p.
122371
. 10.1016/j.cej.2019.122371
101.
Meng
,
Y.
,
Li
,
Y.
,
Xia
,
J.
,
Hu
,
Q.
,
Ke
,
X.
,
Ren
,
G.
, and
Zhu
,
F.
,
2019
, “
F-Doped LiFePO4@N/B/F-Doped Carbon as High Performance Cathode Materials for Li-Ion Batteries
,”
Appl. Surf. Sci.
,
476
(
January
), pp.
761
768
. 10.1016/j.apsusc.2019.01.139
102.
Zhao
,
S.-X.
,
Ding
,
H.
,
Wang
,
Y.-C.
,
Li
,
B.-H.
, and
Nan
,
C.-W.
,
2013
, “
Improving Rate Performance of LiFePO4 Cathode Materials by Hybrid Coating of Nano-Li3PO4 and Carbon
,”
J. Alloys Compd.
,
566
, pp.
206
211
. 10.1016/j.jallcom.2013.03.041
103.
Yang
,
W.
,
Zhuang
,
Z.
,
Chen
,
X.
,
Zou
,
M.
,
Zhao
,
G.
,
Feng
,
Q.
,
Li
,
J.
,
Lin
,
Y.
, and
Huang
,
Z.
,
2015
, “
A Simple and Novel Si Surface Modification on LiFePO4 @C Electrode and Its Suppression of Degradation of Lithium Ion Batteries
,”
Appl. Surf. Sci.
,
359
, pp.
875
882
. 10.1016/j.apsusc.2015.10.224
104.
Shu
,
H.
,
Chen
,
M.
,
Fu
,
Y.
,
Yang
,
X.
,
Yi
,
X.
,
Bai
,
Y.
,
Liang
,
Q.
,
Wei
,
Q.
,
Hu
,
B.
,
Tan
,
J.
,
Wu
,
C.
,
Zhou
,
M.
, and
Wang
,
X.
,
2014
, “
Improvement of Electrochemical Performance for Spherical LiFePO4 via Hybrid Coated With Electron Conductive Carbon and Fast Li Ion Conductive La0.56Li0.33TiO3
,”
J. Power Sources
,
252
, pp.
73
78
. 10.1016/j.jpowsour.2013.11.036
105.
Yang
,
C. C.
,
Jiang
,
J. R.
,
Karuppiah
,
C.
,
Jang
,
J. H.
,
Wu
,
Z. H.
,
Jose
,
R.
, and
Lue
,
S. J.
,
2018
, “
LATP Ionic Conductor and In-Situ Graphene Hybrid-Layer Coating on LiFePO4 Cathode Material at Different Temperatures
,”
J. Alloys Compd.
,
765
, pp.
800
811
. 10.1016/j.jallcom.2018.06.289
106.
Li
,
Y.
,
Wang
,
J.
,
Huang
,
H.
,
Wang
,
J.
,
Zhang
,
M.
, and
Liang
,
M.
,
2019
, “
Co-Coating Effect of GdPO4 and Carbon on LiFePO4 Cathode Surface for Lithium Ion Batteries
,”
Adv. Powder Technol.
,
30
(
8
), pp.
1
8
. 10.1016/j.apt.2019.04.017
107.
Ma
,
Z.
,
Shao
,
G.
,
Qin
,
X.
,
Fan
,
Y.
,
Wang
,
G.
,
Song
,
J.
, and
Liu
,
T.
,
2014
, “
Ionic Conductor Cerous Phosphate and Carbon Hybrid Coating LiFePO4 With Improved Electrochemical Properties for Lithium Ion Batteries
,”
J. Power Sources
,
269
, pp.
194
202
. 10.1016/j.jpowsour.2014.06.157
108.
Göktepe
,
H.
,
Şahan
,
H.
, and
Patat
,
Ş
,
2016
, “
Effect of Silver and Carbon Double Coating on the Electrochemical Performance of LiFePO4 Cathode Material for Lithium Ion Batteries
,”
Int. J. Hydrogen Energy
,
41
(
23
), pp.
9774
9779
. 10.1016/j.ijhydene.2016.03.074
109.
Ha
,
S. H.
, and
Lee
,
Y. J.
,
2015
, “
Core-Shell LiFePO4/Carbon-Coated Reduced Graphene Oxide Hybrids for High-Power Lithium-Ion Battery Cathodes
,”
Chem.—A Eur. J.
,
21
(
5
), pp.
2132
2138
. 10.1002/chem.201404952
110.
Xu
,
D.
,
Wang
,
P.
, and
Shen
,
B.
,
2016
, “
Synthesis and Characterization of Sulfur-Doped Carbon Decorated LiFePO4 Nanocomposite as High Performance Cathode Material for Lithium-Ion Batteries
,”
Ceram. Int.
,
42
(
4
), pp.
5331
5338
. 10.1016/j.ceramint.2015.12.064
111.
Chung
,
S. Y.
, and
Chiang
,
Y. M.
,
2003
, “
Microscale Measurements of the Electrical Conductivity of Doped LiFePO4
,”
Electrochem. Solid-State Lett.
,
6
(
12
), pp.
278
281
. 10.1149/1.1621289
112.
Johnson
,
I. D.
,
Blagovidova
,
E.
,
Dingwall
,
P. A.
,
Brett
,
D. J. L.
,
Shearing
,
P. R.
, and
Darr
,
J. A.
,
2016
, “
High Power Nb-Doped LiFePO4 Li-Ion Battery Cathodes; Pilot-Scale Synthesis and Electrochemical Properties
,”
J. Power Sources
,
326
, pp.
476
481
. 10.1016/j.jpowsour.2016.06.128
113.
Wang
,
D.
,
Li
,
H.
,
Shi
,
S.
,
Huang
,
X.
, and
Chen
,
L.
,
2005
, “
Improving the Rate Performance of LiFePO4 by Fe-Site Doping
,”
Electrochim. Acta
,
50
(
14
), pp.
2955
2958
. 10.1016/j.electacta.2004.11.045
114.
Wang
,
C.
, and
Hong
,
J.
,
2007
, “
Ionic/Electronic Conducting Characteristics of LiFePO[Sub 4] Cathode Materials
,”
Electrochem. Solid-State Lett.
,
10
(
3
), p.
A65
. 10.1149/1.2409768
115.
Yang
,
M.-R.
, and
Ke
,
W.-H.
,
2008
, “
The Doping Effect on the Electrochemical Properties of LiFe0.95M0.05PO4 (M = Mg2 +, Ni2 + , Al3 + , or V3 +) as Cathode Materials for Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
155
(
10
), pp.
A729
A732
. 10.1149/1.2960933
116.
Chiang
,
C. Y.
,
Su
,
H. C.
,
Wu
,
P. J.
,
Liu
,
H. J.
,
Hu
,
C. W.
,
Sharma
,
N.
,
Peterson
,
V. K.
,
Hsieh
,
H. W.
,
Lin
,
Y. F.
,
Chou
,
W. C.
,
Lee
,
C. H.
,
Lee
,
J. F.
, and
Shew
,
B. Y.
,
2012
, “
Vanadium Substitution of LiFePO4 Cathode Materials to Enhance the Capacity of LiFePO4-Based Lithium-Ion Batteries
,”
J. Phys. Chem. C
,
116
(
46
), pp.
24424
24429
. 10.1021/jp307047w
117.
Chung
,
S.-Y.
,
Bloking
,
J. T.
, and
Chiang
,
Y.-M.
,
2002
, “
Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes
,”
Nat. Mater.
,
1
(
2
), pp.
123
128
. 10.1038/nmat732
118.
Wagemaker
,
M.
,
Ellis
,
B. L.
,
Lützenkirchen-Hecht
,
D.
,
Mulder
,
F. M.
, and
Nazar
,
L. F.
,
2008
, “
Proof of Supervalent Doping in Olivine LiFePO4
,”
Chem. Mater.
,
20
(
20
), pp.
6313
6315
. 10.1021/cm801781k
119.
Wang
,
B.
,
Xu
,
B.
,
Liu
,
T.
,
Liu
,
P.
,
Guo
,
C.
,
Wang
,
S.
,
Wang
,
Q.
,
Xiong
,
Z.
,
Wang
,
D.
, and
Zhao
,
X. S.
,
2014
, “
Mesoporous Carbon-Coated LiFePO4 Nanocrystals Co-Modified With Graphene and Mg2+ Doping as Superior Cathode Materials for Lithium Ion Batteries
,”
Nanoscale
,
6
(
2
), pp.
986
995
. 10.1039/C3NR04611G
120.
Barker
,
J.
,
Saidi
,
M. Y.
, and
Swoyer
,
J. L.
,
2003
, “
Lithium Iron(II) Phospho-Olivines Prepared by a Novel Carbothermal Reduction Method
,”
Electrochem. Solid-State Lett.
,
6
(
3
), pp.
53
55
. 10.1149/1.1544211
121.
Örnek
,
A.
, and
Efe
,
O.
,
2015
, “
Doping Qualifications of LiFe1-XMgxPO4-C Nano-Scale Composite Cathode Materials
,”
Electrochim. Acta
,
166
, pp.
338
349
. 10.1016/j.electacta.2015.03.010
122.
Johnson
,
I. D.
,
Lübke
,
M.
,
Wu
,
O. Y.
,
Makwana
,
N. M.
,
Smales
,
G. J.
,
Islam
,
H. U.
,
Dedigama
,
R. Y.
,
Gruar
,
R. I.
,
Tighe
,
C. J.
,
Scanlon
,
D. O.
,
Corà
,
F.
,
Brett
,
D. J. L.
,
Shearing
,
P. R.
, and
Darr
,
J. A.
,
2016
, “
Pilot-Scale Continuous Synthesis of a Vanadium-Doped LiFePO4/C Nanocomposite High-Rate Cathodes for Lithium-Ion Batteries
,”
J. Power Sources
,
302
, pp.
410
418
. 10.1016/j.jpowsour.2015.10.068
123.
Jiang
,
S.
, and
Wang
,
Y.
,
2019
, “
Synthesis and Characterization of Vanadium-Doped LiFePO4 @C Electrode With Excellent Rate Capability for Lithium-Ion Batteries
,”
Solid State Ionics
,
335
, pp.
97
102
. 10.1016/j.ssi.2019.03.002
124.
Lv
,
Y. j.
,
Huang
,
B.
,
Tan
,
J. x.
,
Jiang
,
S. q.
,
Zhang
,
S. f.
, and
Wen
,
Y. x.
,
2018
, “
Enhanced Low Temperature Electrochemical Performances of LiFePO4/C by V3+ and F−Co-Doping
,”
Mater. Lett.
,
229
, pp.
349
352
. 10.1016/j.matlet.2018.07.049
125.
Örnek
,
A.
,
Bulut
,
E.
,
Can
,
M.
, and
Özacar
,
M.
,
2013
, “
Characteristics of Nanosized LiNixFe1-XPO4/C (X = 0.00-0.20) Composite Material Prepared via Sol-Gel-Assisted Carbothermal Reduction Method
,”
J. Solid State Electrochem.
,
17
(
12
), pp.
3101
3107
. 10.1007/s10008-013-2201-5
126.
Novikova
,
S.
,
Yaroslavtsev
,
S.
,
Rusakov
,
V.
,
Chekannikov
,
A.
,
Kulova
,
T.
,
Skundin
,
A.
, and
Yaroslavtsev
,
A.
,
2015
, “
Behavior of LiFe1-YMnyPO4/C Cathode Materials Upon Electrochemical Lithium Intercalation/Deintercalation
,”
J. Power Sources
,
300
, pp.
444
452
. 10.1016/j.jpowsour.2015.09.092
127.
Ding
,
J.
,
Su
,
Z.
, and
Tian
,
H.
,
2016
, “
Synthesis of High Rate Performance LiFe1−xMnxPO4/C Composites for Lithium-Ion Batteries
,”
Ceram. Int.
,
42
(
10
), pp.
12435
12440
. 10.1016/j.ceramint.2016.04.184
128.
Budumuru
,
A. K.
,
Viji
,
M.
,
Jena
,
A.
,
Nanda
,
B. R. K.
, and
Sudakar
,
C.
,
2018
, “
Mn Substitution Controlled Li-Diffusion in Single Crystalline Nanotubular LiFePO4 High Rate-Capability Cathodes: Experimental and Theoretical Studies
,”
J. Power Sources
,
406
(
October
), pp.
50
62
. 10.1016/j.jpowsour.2018.10.020
129.
Zhang
,
D.
,
Wang
,
J.
,
Dong
,
K.
, and
Hao
,
A.
,
2018
, “
First Principles Investigation on the Elastic and Electronic Properties of Mn, Co, Nb, Mo Doped LiFePO4
,”
Comput. Mater. Sci.
,
155
, pp.
410
415
. 10.1016/j.commatsci.2018.09.010
130.
Zhang
,
W.
,
Hu
,
Y.
,
Tao
,
X.
,
Huang
,
H.
,
Gan
,
Y.
, and
Wang
,
C.
,
2010
, “
Synthesis of Spherical LiFePO4/C via Ni Doping
,”
J. Phys. Chem. Solids
,
71
(
9
), pp.
1196
1200
. 10.1016/j.jpcs.2010.04.015
131.
Kim
,
S.
,
Mathew
,
V.
,
Kang
,
J.
,
Gim
,
J.
,
Song
,
J.
,
Jo
,
J.
, and
Kim
,
J.
,
2016
, “
High Rate Capability of LiFePO4 Cathodes Doped With a High Amount of Ti
,”
Ceram. Int.
,
42
(
6
), pp.
7230
7236
. 10.1016/j.ceramint.2016.01.115
132.
Wang
,
Y.
,
Yang
,
Y.
,
Hu
,
X.
,
Yang
,
Y.
, and
Shao
,
H.
,
2009
, “
Electrochemical Performance of Ru-Doped LiFePO4/C Cathode Material for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
481
(
1–2
), pp.
590
594
. 10.1016/j.jallcom.2009.03.033
133.
Zhao
,
N.
,
Li
,
Y.
,
Zhi
,
X.
,
Wang
,
L.
,
Zhao
,
X.
,
Wang
,
Y.
, and
Liang
,
G.
,
2016
, “
Effect of Ce3+Doping on the Properties of LiFePO4 Cathode Material
,”
J. Rare Earths
,
34
(
2
), pp.
174
180
. 10.1016/S1002-0721(16)60011-X
134.
Okada
,
K.
,
Kimura
,
I.
, and
Machida
,
K.
,
2018
, “
High Rate Capability by Sulfur-Doping Into LiFePO4 Matrix
,”
RSC Adv.
,
8
(
11
), pp.
5848
5853
. 10.1039/C7RA12740E
135.
Li
,
X.
,
Shao
,
Z.
,
Liu
,
K.
,
Zhao
,
Q.
,
Liu
,
G.
, and
Xu
,
B.
,
2018
, “
Effect of F-Doping on the Properties of LiFePO4-x/3Fx/C Cathode Materials via Wet Mechanical Agitation-Assisted High-Temperature Ball Milling Method
,”
J. Solid State Electrochem.
,
22
(
9
), pp.
2837
2843
. 10.1007/s10008-018-4001-4
136.
Gao
,
C.
,
Zhou
,
J.
,
Liu
,
G.
, and
Wang
,
L.
,
2017
, “
Synthesis of F-Doped LiFePO4/C Cathode Materials for High Performance Lithium-Ion Batteries Using Co-Precipitation Method With Hydrofluoric Acid Source
,”
J. Alloys Compd.
,
727
, pp.
501
513
. 10.1016/j.jallcom.2017.08.149
137.
Tu
,
J.
,
Wu
,
K.
,
Tang
,
H.
,
Zhou
,
H.
, and
Jiao
,
S.
,
2017
, “
Mg-Ti Co-Doping Behavior of Porous LiFePO4 Microspheres for High-Rate Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
5
(
32
), pp.
17021
17028
. 10.1039/C7TA04426G
138.
Tian
,
Z.
,
Zhou
,
Z.
,
Liu
,
S.
,
Ye
,
F.
, and
Yao
,
S.
,
2015
, “
Enhanced Properties of Olivine LiFePO4/Graphene Co-Doped With Nb5 + and Ti4 + by a Sol–Gel Method
,”
Solid State Ionics
,
278
, pp.
186
191
. 10.1016/j.ssi.2015.06.017
139.
Yuan
,
H.
,
Wang
,
X.
,
Wu
,
Q.
,
Shu
,
H.
, and
Yang
,
X.
,
2016
, “
Effects of Ni and Mn Doping on Physicochemical and Electrochemical Performances of LiFePO4/C
,”
J. Alloys Compd.
,
675
, pp.
187
194
. 10.1016/j.jallcom.2016.03.065
140.
Yang
,
X.
,
Hu
,
Z.
, and
Liang
,
J.
,
2015
, “
Effects of Sodium and Vanadium Co-Doping on the Structure and Electrochemical Performance of LiFePO4/C Cathode Material for Lithium-Ion Batteries
,”
Ceram. Int.
,
41
(
2
), pp.
2863
2868
. 10.1016/j.ceramint.2014.10.108
141.
Huang
,
Y.
,
Xu
,
Y.
, and
Yang
,
X.
,
2013
, “
Enhanced Electrochemical Performances of LiFePO4/C by Co-Doping With Magnesium and Fluorine
,”
Electrochim. Acta
,
113
, pp.
156
163
. 10.1016/j.electacta.2013.09.044
142.
Verma
,
P.
,
Maire
,
P.
, and
Novák
,
P.
,
2010
, “
A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries
,”
Electrochim. Acta
,
55
(
22
), pp.
6332
6341
. 10.1016/j.electacta.2010.05.072
143.
Xu
,
K.
,
2014
, “
Electrolytes and Interphases in Li-Ion Batteries and Beyond
,”
Chem. Rev.
,
114
(
23
), pp.
11503
11618
. 10.1021/cr500003w
144.
Sun
,
Y.
,
Lee
,
H. W.
,
Zheng
,
G.
,
Seh
,
Z. W.
,
Sun
,
J.
,
Li
,
Y.
, and
Cui
,
Y.
,
2016
, “
In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes
,”
Nano Lett.
,
16
(
2
), pp.
1497
1501
. 10.1021/acs.nanolett.5b05228
145.
Sun
,
Y.
,
Lee
,
H. W.
,
Seh
,
Z. W.
,
Liu
,
N.
,
Sun
,
J.
,
Li
,
Y.
, and
Cui
,
Y.
,
2016
, “
High-Capacity Battery Cathode Prelithiation to Offset Initial Lithium Loss
,”
Nat. Energy
,
1
(
1
), pp.
1
7
.
146.
Shanmukaraj
,
D.
,
Grugeon
,
S.
,
Laruelle
,
S.
,
Douglade
,
G.
,
Tarascon
,
J. M.
, and
Armand
,
M.
,
2010
, “
Sacrificial Salts: Compensating the Initial Charge Irreversibility in Lithium Batteries
,”
Electrochem. Commun.
,
12
(
10
), pp.
1344
1347
. 10.1016/j.elecom.2010.07.016
147.
Jarvis
,
C. R.
,
Lain
,
M. J.
,
Yakovleva
,
M. V.
, and
Gao
,
Y.
,
2006
, “
A Prelithiated Carbon Anode for Lithium-Ion Battery Applications
,”
J. Power Sources
,
162
(
2 SPEC. ISS.
), pp.
800
802
. 10.1016/j.jpowsour.2005.07.051
148.
Wang
,
Z.
,
Fu
,
Y.
,
Zhang
,
Z.
,
Yuan
,
S.
,
Amine
,
K.
,
Battaglia
,
V.
, and
Liu
,
G.
,
2014
, “
Application of Stabilized Lithium Metal Powder (SLMP®) in Graphite Anode—A High Efficient Prelithiation Method for Lithium-Ion Batteries
,”
J. Power Sources
,
260
, pp.
57
61
. 10.1016/j.jpowsour.2014.02.112
149.
Lu
,
P.
,
Abdelbast
,
G.
,
Zhou
,
X.
,
Battaglia
,
V. S.
,
Jiang
,
M.
,
Song
,
X.
,
Shi
,
F.
,
Zheng
,
Z.
,
Zaghib
,
K.
,
Fu
,
Y.
,
Zhao
,
H.
,
Liu
,
Z.
,
Liu
,
G.
,
Xiao
,
X.
, and
Wang
,
Z.
,
2014
, “
Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design
,”
Nano Lett.
,
14
(
11
), pp.
6704
6710
. 10.1021/nl503490h
150.
Staub
,
J. W.
,
Landi
,
B. J.
,
Ridgley
,
R. D.
,
Forney
,
M. W.
, and
Ganter
,
M. J.
,
2013
, “
Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)
,”
Nano Lett.
,
13
(
9
), pp.
4158
4163
. 10.1021/nl401776d
151.
Zhao
,
R. R.
,
Hung
,
I. M.
,
Li
,
Y. T.
,
Chen
,
H. Y.
, and
Lin
,
C. P.
,
2012
, “
Synthesis and Properties of Co-Doped LiFePO4 as Cathode Material via a Hydrothermal Route for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
513
, pp.
282
288
. 10.1016/j.jallcom.2011.10.037
152.
Zhao
,
J.
,
Lu
,
Z.
,
Wang
,
H.
,
Liu
,
W.
,
Lee
,
H.-W.
,
Yan
,
K.
,
Zhuo
,
D.
,
Lin
,
D.
,
Liu
,
N.
, and
Cui
,
Y.
,
2015
, “
Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
,”
J. Am. Chem. Soc.
,
137
(
26
), pp.
8372
8375
. 10.1021/jacs.5b04526
153.
Cui
,
Y.
,
McDowell
,
M. T.
,
Lee
,
H.-W.
,
Zhao
,
J.
,
Liu
,
N.
, and
Lu
,
Z.
,
2014
, “
Dry-Air-Stable Lithium Silicide–Lithium Oxide Core–Shell Nanoparticles as High-Capacity Prelithiation Reagents
,”
Nat. Commun.
,
5
(
1
), pp.
1
8
.
154.
Park
,
K.-S.
,
Im
,
D.
,
Benayad
,
A.
,
Dylla
,
A.
,
Stevenson
,
K. J.
, and
Goodenough
,
J. B.
,
2012
, “
LiFeO2-Incorporated Li2MoO3 as a Cathode Additive for Lithium-Ion Battery Safety
,”
Chem. Mater.
,
24
(
14
), pp.
2673
2683
. 10.1021/cm300505y
155.
Yoon
,
T.
,
Park
,
H.
,
Ryu
,
J. H.
,
Oh
,
S. M.
, and
Kim
,
Y.-U.
,
2013
, “
Li2NiO2 as a Sacrificing Positive Additive for Lithium-Ion Batteries
,”
Electrochim. Acta
,
108
, pp.
591
595
. 10.1016/j.electacta.2013.06.117
156.
Kim
,
M. G.
, and
Cho
,
J.
,
2008
, “
Air Stable Al2O3-Coated Li2NiO2 Cathode Additive as a Surplus Current Consumer in a Li-Ion Cell
,”
J. Mater. Chem.
,
18
(
48
), pp.
5880
5887
. 10.1039/b814161d
157.
Noh
,
M.
, and
Cho
,
J.
,
2012
, “
Role of Li6CoO4 Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1329
A1334
. 10.1149/2.085208jes
158.
Diaz-Lopez
,
M.
,
Chater
,
P. A.
,
Bordet
,
P.
,
Freire
,
M.
,
Jordy
,
C.
,
Lebedev
,
O. I.
, and
Pralong
,
V.
,
2020
, “
Li2O:Li–Mn–O Disordered Rock-Salt Nanocomposites as Cathode Prelithiation Additives for High-Energy Density Li-Ion Batteries
,”
Adv. Energy Mater.
,
1902788
, pp.
1
6
. 10.1016/j.jpowsour.2016.05.063
159.
Park
,
K.
,
Yu
,
B. C.
, and
Goodenough
,
J. B.
,
2016
, “
Li3N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
6
(
10
), pp.
1
7
. 10.1002/aenm.201502534
160.
Pei
,
A.
,
Sun
,
Y.
,
Cui
,
Y.
,
Li
,
Y.
,
Li
,
Y.
, and
Sun
,
J.
,
2016
, “
Stabilized Li 3 N for Efficient Battery Cathode Prelithiation
,”
Energy Storage Mater.
,
6
, pp.
119
124
. 10.1016/j.ensm.2016.10.004
161.
Sun
,
Y.
,
Lee
,
H. W.
,
Seh
,
Z. W.
,
Zheng
,
G.
,
Sun
,
J.
,
Li
,
Y.
, and
Cui
,
Y.
,
2016
, “
Lithium Sulfide/Metal Nanocomposite as a High-Capacity Cathode Prelithiation Material
,”
Adv. Energy Mater.
,
6
(
12
), pp.
1
7
. 10.1002/aenm.201600154
162.
Cheng
,
X. B.
,
Yan
,
C.
,
Zhang
,
X. Q.
,
Liu
,
H.
, and
Zhang
,
Q.
,
2018
, “
Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes
,”
ACS Energy Lett.
,
3
(
7
), pp.
1564
1570
. 10.1021/acsenergylett.8b00526
163.
Xu
,
K.
,
Liu
,
X.
,
Liang
,
J.
,
Cai
,
J.
,
Zhang
,
K.
,
Lu
,
Y.
,
Wu
,
X.
,
Zhu
,
M.
,
Liu
,
Y.
,
Zhu
,
Y.
,
Wang
,
G.
, and
Qian
,
Y.
,
2018
, “
Manipulating the Redox Kinetics of Li-S Chemistry by Tellurium Doping for Improved Li-S Batteries
,”
ACS Energy Lett.
,
3
(
2
), pp.
420
427
. 10.1021/acsenergylett.7b01249
164.
Liu
,
K.
,
Zhang
,
Q.
,
Dai
,
S.
,
Li
,
W.
,
Liu
,
X.
,
Ding
,
F.
, and
Zhang
,
J.
,
2018
, “
Synergistic Effect of F– Doping and LiF Coating on Improving the High-Voltage Cycling Stability and Rate Capacity of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
40
), pp.
34153
34162
. 10.1021/acsami.8b10016
165.
Zhan
,
Y.
,
Yu
,
H.
,
Ben
,
L.
,
Chen
,
Y.
, and
Huang
,
X.
,
2017
, “
Using Li2S to Compensate for the Loss of Active Lithium in Li-Ion Batteries
,”
Electrochim. Acta
,
255
, pp.
212
219
. 10.1016/j.electacta.2017.09.167
166.
Lee
,
H.
,
Chang
,
S.-K.
,
Goh
,
E.-Y.
,
Jeong
,
J.-Y.
,
Lee
,
J. H.
,
Kim
,
H.-J.
,
Cho
,
J.-J.
, and
Hong
,
S.-T.
,
2008
, “
Li2NiO2 as a Novel Cathode Additive for Overdischarge Protection of Li-Ion Batteries
,”
Chem. Mater.
,
20
(
1
), pp.
5
7
. 10.1021/cm702290p
167.
Su
,
X.
,
Lin
,
C.
,
Wang
,
X.
,
Maroni
,
V. A.
,
Ren
,
Y.
,
Johnson
,
C. S.
, and
Lu
,
W.
,
2016
, “
A New Strategy to Mitigate the Initial Capacity Loss of Lithium Ion Batteries
,”
J. Power Sources
,
324
, pp.
150
157
. 10.1016/j.jpowsour.2016.05.063
You do not currently have access to this content.