Acid–base blends of sulfonated polyethersulfone (SPES) with pristine and aminated polyetherimide (APEI) are synthesized. Three blends polyethersulfone (PES)/polyetherimide (PEI), SPES/PEI, and SPES/APEI are prepared and characterized to evaluate their structural, morphological, mechanical, and other properties. Ion exchange capacity (IEC) of SPES/APEI and SPES/PEI blend membranes was determined to be 3.0 and 2.7 meq g−1, which is a substantial improvement over the 1.0 meq g−1 exhibited by unmodified PES/PEI blend. The proton conductivity of 0.093 S cm−1 displayed by SPES/APEI blend is found to be comparable to that of commercial Nafion membrane (0.056 S cm−1) and far superior to conductivities of 0.091 and 0.082 S cm−1 shown by SPES/PEI and PES/PEI blends, respectively. Further, water sorption observed in case of SPES/APEI and SPES/PEI blends was in the range 17–18% over a soaking time period of 12 hrs, which is ideal for proton conduction accompanied by low-membrane swelling. The methanol permeabilities of SPES/APEI and SPES/PEI blends are found to be 2.5 × 10−7 and 3.47 × 10−7 cm2 s−1, respectively. Compared to unmodified PES/PEI blend which revealed a methanol sorption of 12.3%, the modified blends SPES/PEI (9.6%) and SPES/APEI (7.5%) exhibited much lower methanol uptake over a sorption time of 12 hrs, indicating their capacity for low fuel bypass. The results demonstrate the promising potential of polymer blends made by combining a sulfonated polymer with an aminated polymer, such as SPES/APEI for fuel cell (FC) applications.

References

1.
Zicheng
,
Z.
,
Yongzhu
,
F.
, and
Arumugam
,
M.
,
2012
, “
Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells
,”
Polymers
,
4
(
4
), pp.
1627
1644
.
2.
Pierozynski
,
B.
,
2008
, “
Fuel Cells–The Future of Electricity Generation for Portable Applications
,”
Environ. Biotechnol.
,
4
(
2
), pp.
60
64
.
3.
Jung
,
H. W.
,
2007
, “
Applications of Proton Exchange Membrane Fuel Cell Systems
,”
Renewable Sustainable Energy Rev.
,
11
(
8
), pp.
1720
1738
.
4.
Adolfo
,
L.
, and
Angelo
,
B.
,
2012
, “
Sulfonated PEEK-Based Polymers in PEMFC and DMFC Applications: A Review
,”
Int. J. Hydrogen Energy
,
37
(
20
), pp.
15241
15255
.
5.
Mao
,
L. L.
,
Ananta
,
K. M.
,
Nam
,
H. K.
, and
Joong
,
H. L.
,
2012
, “
Poly(2,5-Benzimidazole)–Silica Nanocomposite Membranes for High Temperature Proton Exchange Membrane Fuel Cell
,”
J. Membr. Sci.
,
411
, pp.
91
98
.
6.
Chao
,
C. L.
,
Chuan
,
B. C.
, and
Yen
,
Z. W.
,
2013
, “
Preparation and Properties of Cross-Linked Sulfonated Poly(Imide-Siloxane) for Polymer Electrolyte Fuel Cell Application
,”
J. Power Sources
,
223
, pp.
277
283
.
7.
Kerres
,
J.
,
Zhang
,
W.
,
Jorissen
,
L.
, and
Gogel
,
V.
,
2002
, “
Application of Different Types of Polyaryl-Blend-Membranes in DMFC
,”
J. New Mater. Electrochem. Syst.
,
5
(
2
), pp.
97
107
.
8.
Vladimir
,
N.
,
Jonathan
,
M.
,
Haijiang
,
W.
, and
Jiujun
,
Z.
,
2007
, “
A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
,
169
(
2
), pp.
221
238
.
9.
Zhao
,
C.
,
Wang
,
Z.
,
Bi
,
D.
,
Lin
,
H.
,
Shao
,
K.
,
Fu
,
T.
,
Zhong
,
S.
, and
Na
,
H.
,
2007
, “
Blend Membranes Based on Disulfonated Poly(Aryl Ether Ether Ketone)s (SPEEK) and Poly(Amide Imide) (PAI) for Direct Methanol Fuel Cell Usages
,”
Polymer
,
48
(
11
), pp.
3090
3097
.
10.
Mabrouk
,
W.
,
Ogier
,
L.
,
Vidal
,
S.
,
Sollogoub
,
C.
,
Matoussi
,
F.
, and
Fauvarque
,
J. F.
,
2014
, “
Ion Exchange Membranes Based Upon Crosslinked Sulfonated Polyethersulfone for Electrochemical Applications
,”
J. Membr. Sci.
,
452
, pp.
263
270
.
11.
Kim
,
D. H.
, and
Kim
,
S. C.
,
2008
, “
Transport Properties of Polymer Blend Membranes of Sulfonated and Nonsulfonated Polysulfones for Direct Methanol Fuel Cell Application
,”
Macromol. Res.
,
16
(
5
), pp.
457
466
.
12.
Lee
,
M.
,
Khan
,
S. B.
,
Akhtar
,
K.
,
Han
,
H.
, and
Seo
,
J.
,
2013
, “
Fuel Cell: Synthesis and Properties of Polyimide for PEMFC at High Temperature
,”
Int. J. Electrochem. Sci.
,
8
(
1
), pp.
4225
4233
.
13.
Guhathakurta
,
S.
, and
Min
,
K.
,
2009
, “
Influence of Crystal Morphology of 1H-1,2,4-Triazole on Anhydrous State Proton Conductivity of Sulfonated Bisphenol a Polyetherimide Based Polyelectrolytes
,”
Polymer
,
50
(
4
), pp.
1034
1045
.
14.
Jennifer
,
P.
,
Elodie
,
R.
,
Deborah
,
J. J.
, and
Jacques
,
R.
,
2008
, “
Solution Sulfonation of a Novel Polybenzimidazole: A Proton Electrolyte for Fuel Cell Application
,”
J. Membr. Sci.
,
314
(
1–2
), pp.
247
256
.
15.
Kingshuk
,
D.
,
Suparna
,
D.
,
Piyush
,
K.
, and
Patit
,
P. K.
,
2014
, “
Polymer Electrolyte Membrane With High Selectivity Ratio for Direct Methanol Fuel Cells: A Preliminary Study Based on Blends of Partially Sulfonated Polymers Polyaniline and PVdF-co-HFP
,”
Appl. Energy
,
118
, pp.
183
191
.
16.
Huiping
,
B.
,
Jiali
,
W.
,
Shouwen
,
C.
,
Zhaoxia
,
H.
,
Zhilin
,
G.
,
Lianjun
,
W.
, and
Kenichi
,
O.
,
2010
, “
Preparation and Properties of Cross-Linked Sulfonated Poly(Arylene Ether Sulfone)/Sulfonated Polyimide Blend Membranes for Fuel Cell Application
,”
J. Membr. Sci.
,
350
(
1–2
), pp.
109
116
.
17.
Araby
,
R. E.
,
Attia
,
N. K.
,
Eldiwani
,
G.
,
Sobhi
,
S.
, and
Mostafa
,
T.
,
2012
, “
Preparation of Sulfonated Monomer for Pem Fuel Cell and Solvent Optimization for Recrystallization
,”
World Appl. Sci. J.
,
16
(
8
), pp.
1082
1086
.
18.
Sheng
,
L. C.
,
Bocarslyb
,
A. B.
, and
Benziger
,
J.
,
2005
, “
Nafion-Layered Sulfonated Polysulfone Fuel Cell Membranes
,”
J. Power Sources
,
152
(
1
), pp.
27
33
.
19.
Jedeok
,
K.
,
Anna
,
D.
,
MunSuk
,
J.
, and
Maria
,
L. D. V.
,
2013
, “
Crosslinked SPES-SPPSU Membranes for High Temperature PEMFCs
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1517
1523
.
20.
Xiao
,
L.
,
Chuankun
,
J.
,
Jianguo
,
L.
, and
Chuanwei
,
Y.
,
2012
, “
Preparation and Characterization of Sulfonated Poly(Ether Sulfone)/Sulfonated Poly(Ether Ether Ketone) Blend Membrane for Vanadium Redox Flow Battery
,”
J. Membr. Sci.
,
415–416
, pp.
306
312
.
21.
Krishnan
,
N. N.
,
Lee
,
H. J.
,
Kim
,
H. J.
,
Kim
,
J. Y.
,
Hwang
,
I.
,
Jang
,
J. H.
,
Cho
,
E. A.
,
Kim
,
S. K.
,
Henkensmeier
,
D.
,
Hong
,
S. A.
, and
Lim
,
T. H.
,
2010
, “
Sulfonated Poly(Ether Sulfone)/Sulfonated Polybenzimidazole Blend Membrane for Fuel Cell Applications
,”
Eur. Polym. J.
,
46
(
7
), pp.
1633
1641
.
22.
Smitha
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
,
2006
, “
Chitosan–Poly(Vinyl Pyrrolidone) Blends as Membranes for Direct Methanol Fuel Cell Applications
,”
J. Power Sources
,
159
(
2
), pp.
846
854
.
23.
Graciela
,
C. A.
,
Patrick
,
N.
,
Esteban
,
A. F.
,
Federico
,
H. I.
,
Mkhulu
,
K. M.
, and
Horacio
,
R. C.
,
2010
, “
Characterization of an Anionic-Exchange Membranes for Direct Methanol Alkaline Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5849
5854
.
24.
Ramya
,
K.
,
Vishnupriya
,
B.
, and
Dhathathreyan
,
K. S.
,
2010
, “
Methanol Permeability Studies on Sulphonated Polyphenylene Oxide Membrane for Direct Methanol Fuel Cell
,”
J. New Mater. Electrochem. Syst.
,
4
(
2
), pp.
115
120
.
25.
Haufe
,
S.
, and
Stimming
,
U.
,
2001
, “
Proton Conducting Membranes Based on Electrolyte Filled Microporous Matrices
,”
J. Membr. Sci.
,
185
(
1
), pp.
95
103
.
26.
Feng
,
M.
,
Qu
,
R.
,
Wei
,
Z.
,
Wang
,
L.
,
Sun
,
P.
, and
Wang
,
Z.
,
2015
, “
Characterization of the Thermolysis Products of Nafion Membrane: A Potential Source of Perfluorinated Compounds in the Environment
,”
Sci. Rep.
,
5
, p.
9859
.
27.
Jang
,
W.
,
Sundar
,
S.
,
Choi
,
S.
,
Shul
,
Y. G.
, and
Han
,
H.
,
2006
, “
Acid–Base Polyimide Blends for the Application as Electrolyte Membranes for Fuel Cells
,”
J. Membr. Sci.
,
280
(
1–2
), pp.
321
329
.
28.
Smitha
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
,
2004
, “
Synthesis and Characterization of Sulphonated PEEK Membranes for Fuel Cell Application
,”
J. Polym. Mater.
,
21
, pp.
99
106
.
29.
Smitha
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
,
2003
, “
Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells
,”
J. Membr. Sci.
,
225
(
1–2
), pp.
63
76
.
30.
Madaeni
,
S. S.
,
Amirinejad
,
S.
, and
Amirinejad
,
M.
,
2011
, “
Phosphotungstic Acid Doped Poly(Vinyl Alcohol)/Poly(Ether Sulfone) Blend Composite Membranes for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
,
380
(
1–2
), pp.
132
137
.
31.
Ismail
,
A. F.
,
Othman
,
N. H.
, and
Mustafa
,
A.
,
2009
, “
Sulfonated Polyether Ether Ketone Composite Membrane Using Tungstosilicic Acid Supported on Silica–Aluminium Oxide for Direct Methanol Fuel Cell (DMFC)
,”
J. Membr. Sci.
,
329
(
1–2
), pp.
18
29
.
32.
Diaz
,
L. A.
,
Abuin
,
G. C.
, and
Corti
,
H. R.
,
2012
, “
Methanol Sorption and Permeability in Nafion and Acid-Doped PBI and ABPBI Membranes
,”
J. Membr. Sci.
,
411–412
, pp.
35
44
.
33.
Huang
,
R. Y. M.
,
1991
, “
A Review of: ‘Pervaporation Membrane Separation Processes'
,”
Sep. Purif. Rev.
,
20
(
1
), pp.
109
111
.
34.
Sadrabadi
,
M. M. H.
,
Dashtimoghadam
,
E.
,
Ghaffarian
,
S. R.
,
Sadrabadi
,
M. H. H.
, and
Moaddel
,
M. H. H.
,
2010
, “
Novel High-Performance Nanocomposite Proton Exchange Membranes Based on Poly (Ether Sulfone)
,”
Renewable Energy
,
35
(
1
), pp.
226
231
.
35.
Chen
,
L.
,
Sun
,
L.
,
Zeng
,
R.
,
Xiao
,
S.
, and
Chen
,
Y.
,
2012
, “
Cross-Linked Zwitterionic Polyelectrolytes Based on Sulfonated Poly(Ether Sulfone) With High Proton Conductivity for Direct Methanol Fuel Cells
,”
J. Power Sources
,
212
, pp.
13
21
.
36.
Wen
,
S.
,
Gong
,
C.
,
Tsen
,
W. C.
,
Shu
,
Y. C.
, and
Tsai
,
F. C.
,
2009
, “
Sulfonated Poly(Ether Sulfone) (SPES)/Boron Phosphate (BPO4) Composite Membranes for High-Temperature Proton-Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
(
21
), pp.
8982
8991
.
37.
Seo
,
D. W.
,
Lim
,
Y. D.
,
Lee
,
S. H.
,
Jeong
,
Y. G.
, and
Hang
,
T. W.
,
2010
, “
Preparation and Characterization of Sulfonated Amine-Poly (Ether Sulfone) for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
23
), pp.
13088
13095
.
38.
Chang
,
C. M.
,
Li
,
H. Y.
,
Lai
,
J. Y.
, and
Liu
,
Y. L.
,
2013
, “
Nanocomposite Membranes of Nafion and Fe3O4-Anchored and Nafion-Functionalized Multiwalled Carbon Nanotubes Exhibiting High Proton Conductivity and Low Methanol Permeability for Direct Methanol Fuel Cells
,”
RSC Adv.
,
3
(
31
), pp.
12895
12904
.
39.
Yan
,
X.
,
Wang
,
Y.
,
He
,
G.
,
Hu
,
Z.
,
Wu
,
X.
, and
Du
,
L.
,
2013
, “
Hydroxide Exchange Composite Membrane Based on Soluble Quaternized Polyetherimide for Potential Application in Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
19
), pp.
7964
7972
.
40.
Wang
,
J.
,
Junbin
,
L.
,
Yang
,
L.
,
Zhang
,
S.
,
Huang
,
X.
, and
Ji
,
J.
,
2012
, “
Highly Compatible Acid–Base Blend Membranes Based on Sulfonated Poly(Ether Ether Ketone) and Poly(Ether Ether Ketone-Alt-Benzimidazole) for Fuel Cells Application
,”
J. Membr. Sci.
,
415–416
, pp.
644
653
.
41.
Kim
,
D. J.
,
Lee
,
H. J.
, and
Nam
,
S. Y.
,
2014
, “
Sulfonated Poly(Arylene Ether Sulfone) Membranes Blended With Hydrophobic Polymers for Direct Methanol Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
17524
17532
.
42.
Li
,
W.
,
Manthiram
,
A.
, and
Guiver
,
M. D.
, “
Acid–Base Blend Membranes Consisting of Sulfonated Poly (Ether Ether Ketone) and 5-Amino-Benzotriazole Tethered Polysulfone for DMFC
,”
J. Membr. Sci.
,
362
(
1–2
), pp.
289
297
.
You do not currently have access to this content.