Abstract

Electric motors are widely used in the industry. Several studies have proposed methods to detect anomalies in their operation, but always using sensors dedicated to this purpose. In this sense, this work aims to fill gaps in related works presenting a method for the detection of faults in rotating machines driven by electric motors in motion control applications using PROFINET network and PROFIdrive profile. The proposed method does not require any additional or dedicated sensors to provide data to the diagnostic system. Instead, the proposed methodology is based on the analysis of data transmitted in the communication network, which already exists for control purposes. Support vector machine (SVM) is used as a classifier of five different mechanical faults. The results provide that the methodology is feasible and efficient under different machine operating conditions, achieving, in the worst case, 97.78% efficiency.

References

1.
Arredondo
,
P. A. D.
,
Perez
,
A. G.
,
Sotelo
,
D. M.
,
Rios
,
R. A. O.
,
Cervantes
,
J. G. A.
,
Gonzalez
,
H. R.
, and
Troncoso
,
R. J. R.
,
2015
, “
Comparative Study of Time-Frequency Decomposition Techniques for Fault Detection in Induction Motors Using Vibration Analysis During Startup Transient
,”
Shock Vib.
,
2015
(
1
), pp.
1
15
.10.1155/2015/708034
2.
Commission
,
E.
,
2018
, “
Electric Motors - European Commission
,” European Commission, epub.https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficient- products/electric-motors
3.
McCoy
,
G. A.
, and
Douglass
,
J. G.
,
2014
, “
Premium Efficiency Motor Selection and Application Guide—A Handbook for Industry
,”
Washington State University Energy Program for the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy
,
Pullman, WA
.
4.
Profibus Nutzerorganisation e
,
V.
,
2015
, “
Profile Drive Technology PROFIdrive Profile - Technical Specification for PROFIBUS and PROFINET - Version 4.2)
,”
Manual, Profibus Nutzerorganisation e.V, Karlsruhe
,
Germany
.
5.
Salameh
,
J. P.
,
Cauet
,
S.
,
Etien
,
E.
,
Sakout
,
A.
, and
Rambault
,
L.
,
2018
, “
Gearbox Condition Monitoring in Wind Turbines: A Review
,”
Mech. Syst. Signal Process.
,
111
, pp.
251
264
.10.1016/j.ymssp.2018.03.052
6.
Li
,
X.
,
Yang
,
Y.
,
Bennett
,
I.
, and
Mba
,
D.
,
2019
, “
Condition Monitoring of Rotating Machines Under Time-Varying Conditions Based on Adaptive Canonical Variate Analysis
,”
Mech. Syst. Signal Process.
,
131
, pp.
348
363
.10.1016/j.ymssp.2019.05.048
7.
Drif
,
M.
, and
Cardoso
,
A. J. M.
,
2014
, “
Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1348
1360
.10.1109/TII.2014.2307013
8.
Ghanbari
,
T.
,
2016
, “
Autocorrelation Function-Based Technique for Stator Turn-Fault Detection of Induction Motor
,”
IET Sci. Meas. Technol.
,
10
(
2
), pp.
100
110
.10.1049/iet-smt.2015.0118
9.
Fournier
,
E.
,
Picot
,
A.
,
Régnier
,
J.
,
Yamdeu
,
M. T.
,
Andréjak
,
J. M.
, and
Maussion
,
P.
,
2015
, “
Current-Based Detection of Mechanical Unbalance in an Induction Machine Using Spectral Kurtosis With Reference
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1879
1887
.10.1109/TIE.2014.2341561
10.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Karade
,
S.
,
2010
, “
Experimental Studies Using Response Surface Methodology for Condition Monitoring of Ball Bearings
,”
ASME J. Tribol.
,
132
(
4
), p.
044505
.10.1115/1.4002520
11.
Prieto
,
M. D.
,
Cirrincione
,
G.
,
Espinosa
,
A. G.
,
Ortega
,
J. A.
, and
Henao
,
H.
,
2013
, “
Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3398
3407
.10.1109/TIE.2012.2219838
12.
Dwi
,
H.
,
Alfaradin
,
F.
,
Darojah
,
Z.
, and
Raden
,
S. D.
,
2015
, “
Artificial Neural Network Based Identification System for Abnormal Vibration of Motor Rotating Disc System
,”
International Electronics Symposium (IES)
,
Surabaya, Indonesia
, Sept. 29–30, pp.
251
256
.10.1109/ELECSYM.2015.7380850
13.
Tahir
,
M. M.
,
Hussain
,
A.
,
Badshah
,
S.
,
Khan
,
A. Q.
, and
Iqbal
,
N.
,
2016
, “
Classification of Unbalance and Misalignment Faults in Rotor Using Multi-Axis Time Domain Features
,”
International Conference on Emerging Technologies (ICET)
,
Islamabad, Pakistan
, Oct. 18–19, pp.
1
4
.10.1109/ICET.2016.7813273
14.
Martinez-Morales
,
J. D.
,
Palacios
,
E.
, and
Campos-Delgado
,
D. U.
,
2010
, “
Data Fusion for Multiple Mechanical Fault Diagnosis in Induction Motors at Variable Operating Conditions
,”
Seventh International Conference on Electrical Engineering Computing Science and Automatic Control
,
Tuxtla Gutierrez, Mexico
, Sept. 8–10, pp.
176
181
.10.1109/ICEEE.2010.5608632
15.
Bansal
,
D.
,
Evans
,
D. J.
, and
Jones
,
B.
,
2005
, “
A Real-Time Predictive Maintenance System for Machine Systems—An Alternative to Expensive Motion Sensing Technology
,”
Sensors for Industry Conference
,
Houston, TX
, Feb. 8–10, pp.
39
44
.10.1109/SICON.2005.257867
16.
Ebrahimi
,
B. M.
,
Roshtkhari
,
M. J.
,
Faiz
,
J.
, and
Khatami
,
S. V.
,
2014
, “
Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
2041
2052
.10.1109/TIE.2013.2263777
17.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
.10.1016/j.ymssp.2018.02.016
18.
Sampaio
,
D. L.
, and
Nicoletti
,
R.
,
2016
, “
Detection of Cracks in Shafts With the Approximated Entropy Algorithm
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
286
302
.10.1016/j.ymssp.2015.10.026
19.
Soualhi
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2015
, “
Bearing Health Monitoring Based on Hilbert–Huang Transform, Support Vector Machine, and Regression
,”
IEEE Trans. Instrument. Meas.
,
64
(
1
), pp.
52
62
.10.1109/TIM.2014.2330494
20.
Widodo
,
A.
, and
Yang
,
B.-S.
,
2007
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2560
2574
.10.1016/j.ymssp.2006.12.007
21.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2017
, “
Comparative Investigation of Vibration and Current Monitoring for Prediction of Mechanical and Electrical Faults in Induction Motor Based on Multiclass-Support Vector Machine Algorithms
,”
Mech. Syst. Signal Process.
,
94
, pp.
464
481
.10.1016/j.ymssp.2017.03.016
22.
Vamsi
,
I.
,
Sabareesh
,
G.
, and
Penumakala
,
P.
,
2019
, “
Comparison of Condition Monitoring Techniques in Assessing Fault Severity for a Wind Turbine Gearbox Under Non-Stationary Loading
,”
Mech. Syst. Signal Process.
,
124
, pp.
1
20
.10.1016/j.ymssp.2019.01.038
23.
Sestito
,
G. S.
,
Turcato
,
A. C.
,
Dias
,
A. L.
,
Rocha
,
M. S.
,
da Silva
,
M. M.
,
Ferrari
,
P.
, and
Brandao
,
D.
,
2018
, “
A Method for Anomalies Detection in Real-Time Ethernet Data Traffic Applied to Profinet
,”
IEEE Trans. Ind. Inf.
,
14
(
5
), pp.
2171
2180
.10.1109/TII.2017.2772082
24.
Yang
,
M.
, and
Li
,
G.
,
2014
, “
Analysis of Profinet io Communication Protocol
,”
Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control
,
Harbin, China
, Sept. 18–20, pp.
945
949
.10.1109/IMCCC.2014.199
25.
Lei
,
Y.
,
Yang
,
B.
,
Jiang
,
X.
,
Jia
,
F.
,
Li
,
N.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Signal Process.
,
138
, p.
106587
.10.1016/j.ymssp.2019.106587
26.
Scholkopf
,
B.
, and
Smola
,
A. J.
,
2001
,
Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
,
MIT Press
,
Cambridge, MA
.
27.
Steinwart
,
I.
, and
Christmann
,
A.
,
2008
,
Support Vector Machines
,
Springer Science & Business Media
,
New York
.
28.
Turcato
,
A. C.
,
Dias
,
A. L.
,
Sestito
,
G. S.
,
Flauzino
,
R. A.
,
Brandão
,
D.
,
Sisinni
,
E.
, and
Ferrari
,
P.
,
2020
, “
Introducing a Cloud Based Architecture for the Distributed Analysis of Real-Time Ethernet Traffic
,”
In 2020 IEEE International Workshop on Metrology for Industry 4.0 and IoT
,
29.
Gowid
,
S.
,
Dixon
,
R.
, and
Ghani
,
S.
,
2017
, “
Performance Comparison Between Fft-Based Segmentation, Feature Selection and Fault Identification Algorithm and Neural Network for the Condition Monitoring of Centrifugal Equipment
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
6
), p.
061013
.10.1115/1.4035458
30.
Borges
,
F. A. S.
,
Fernandes
,
R. A. S.
,
Silva
,
I. N.
, and
Silva
,
C. B. S.
,
2016
, “
Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals
,”
IEEE Trans. Ind. Inf.
,
12
(
2
), pp.
824
833
.10.1109/TII.2015.2486379
31.
Patterson
,
J.
, and
Gibson
,
A.
,
2017
,
Deep Learning: A Practitioner's Approach
,
O'Reilly Media
,
Gravenstein, Sebastopol, CA
.
32.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems 25
,
F.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
, and
K. Q.
Weinberger
, eds.,
Curran Associates
,
New York
, pp.
2951
2959
.
33.
Bordoloi
,
D.
, and
Tiwari
,
R.
,
2019
, “
Monitoring of Induction Motor Mechanical and Electrical Faults by Optimum Multiclass-Support Vector Machine Algorithms Using Genetic Algorithm
,”
Mech. Mach. Sci.
,
61
, pp.
120
132
10.1007/978-3-319-99268-6.
34.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2018
, “
Multifault Diagnosis of Induction Motor at Intermediate Operating Conditions Using Wavelet Packet Transform and Support Vector Machine
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p.
081014
.10.1115/1.4039204
35.
Corne
,
B.
,
Knockaert
,
J.
, and
Desmet
,
J.
,
2017
, “
Misalignment and Unbalance Fault Severity Estimation Using Stator Current Measurements
,”
IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)
,
Tinos, Greece
, Aug. 29–Sept. 1, pp.
247
253
.
You do not currently have access to this content.