Abstract

A discrete-time-coupled state-dependent Riccati equation (CSDRE) control strategy is structured in this paper for synthesizing state feedback controllers satisfying the combined nonlinear quadratic regulator (NLQR) and H robust control performance objectives. Under smoothness assumptions, the nonlinear plant dynamics can be formulated into state-dependent coefficient form through direct parameterization. By solving a pair of coupled state-dependent Riccati equations, the optimal stabilizing solutions can achieve inherent stability, nonlinear quadratic optimality, and H disturbance attenuation performance. The established two-player Nash's game theory is utilized for developing both of the finite and infinite time optimal control laws. Furuta swing-up pendulum, a representative nonholonomic underactuated nonlinear system, is stabilized in real-time for validating the robustness and potential of proposed approach in mechatronics applications.

References

1.
Van der Shaft
,
A. J.
,
1993
, “
Nonlinear State Space H Control Theory
,”
Perspectives in Control
,
H. J.
Trentelman
and
J. C.
Willems
, eds.,
Birkhauser
,
Groningen, The Netherlands
.
2.
Doyle
,
J. H.
,
Glover
,
K.
,
Khargonekar
,
P.
, and
Francis
,
B.
,
1989
, “
State Solution to Standard H2 and H Control Problems
,”
IEEE Trans. Autom. Control
,
34
(
8
), pp.
831
847
.10.1109/9.29425
3.
Glover
,
K.
, and
Doyle
,
J. C.
,
1989
, “
A State Space Approach to H-Infinity Optimal Control
,”
Three Decades of Mathematical System Theory
,
H.
Nijmeijer
and
J. M.
Schumacher
, eds.,
Springer-Verlag
,
Berlin
, pp.
179
218
.
4.
Bernstein
,
D. S.
, and
Haddad
,
W. M.
,
1989
, “
LQG Control With an H Performance Bound: A Riccati Equation Approach
,”
IEEE Trans. Autom. Control
,
34
(
3
), pp.
293
305
.10.1109/9.16419
5.
Iglesias
,
P. A.
,
Mustafa
,
D.
, and
Glover
,
K.
,
1990
, “
Discrete Time H Controllers Satisfying a Minimum Entropy Criterion
,”
Syst. Control Lett.
,
14
(
4
), pp.
275
286
.10.1016/0167-6911(90)90048-Y
6.
Mustafa
,
D.
, and
Glover
,
K.
,
1990
,
Minimum Entropy H∞ Control
(Lecture Notes in Control and Information Sciences,
146
),
Springer
,
Berlin, Germany
.
7.
Doyle
,
J.
,
Zhou
,
K.
,
Glover
,
K.
, and
Bodenheimer
,
B.
,
1994
, “
Mixed H2 and H Performance Objectives: II—Optimal Control
,”
IEEE Trans. Autom. Control
,
39
(
8
), pp.
1575
1587
.10.1109/9.310031
8.
Khargonekar
,
P. P.
, and
Rotea
,
M. A.
,
1991
, “
Mixed H2-H Control: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
,
36
(
7
), pp.
824
837
.10.1109/9.85062
9.
Scherer
,
C. W.
,
1995
, “
Multi-Objective H2-H Control
,”
IEEE Trans. Autom. Control
,
40
(
6
), pp.
1054
1062
.10.1109/9.388682
10.
Limebeer
,
D. J. N.
,
Anderson
,
B. D. O.
, and
Hendel
,
B.
,
1994
, “
A Nash Game Approach to the Mixed H2-H-Control Problem
,”
IEEE Trans. Autom. Control
,
39
(
1
), pp.
69
839
.10.1109/9.273340
11.
Basar
,
T.
, and
Bernhard
,
P.
,
1995
,
H Optimal Control and Related Minimax Design Problems—A Dynamic Game Approach
, 2nd ed.,
Birkhauser
,
Basel, Switzerland
.
12.
Chen
,
X.
, and
Zhou
,
K.
,
2001
, “
Multi-Objective H2-H-Control Design
,”
SIAM J. Control Optim.
,
40
(
2
), pp.
628
660
.10.1137/S0363012998346372
13.
Lin
,
W.
,
1996
, “
Mixed H2-H-Control for Nonlinear Systems
,”
Int. J. Control
,
64
(
5
), pp.
899
922
.10.1080/00207179608921664
14.
Lin
,
W.
,
1995
, “
Mixed H2-H-Control for Nonlinear Systems
,”
Proceedings of the 34th IEEE Conference on Decision and Control
,
New Orleans, LA
, Dec. 13–15, pp.
333
338
.
15.
Lin
,
W.
, and
Byrnes
,
C. I.
,
1994
, “
Dissipativity, L2-Gain and H-Control for Discrete-Time Nonlinear Systems
,”
Proceedings of American Control Conference
,
Baltimore, MD
, June 29–July 1, pp.
2257
2260
.
16.
Lin
,
W.
, and
Byrnes
,
C. I.
,
1996
, “
H Control of Discrete-Time Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
41
(
4
), pp.
494
509
.10.1109/9.489271
17.
Lin
,
W.
, and
Byrnes
,
C. I.
,
1995
, “
Discrete-Time Nonlinear H Control With Measurement Feedback
,”
Automatica
,
31
(
3
), pp.
419
434
.10.1016/0005-1098(94)00116-Z
18.
Huang
,
Y.
, and
Lu
,
W.-M.
,
1996
, “
Nonlinear Optimal Control: Alternatives to Hamilton-Jacobi Equation
,”
Proceedings of 35th Conference on Decision and Control
,
Kobe, Japan
, Dec. 11–13, pp.
3942
3947
.10.1109/CDC.1996.577297
19.
Wang
,
X.
,
Yaz
,
E. E.
, and
Yaz
,
Y. I.
,
2010
, “
Robust and Resilient State Dependent Control of Continuous Time Nonlinear Systems With General Performance Criteria
,”
Proceedings of the 49th IEEE Conference on Decision and Control
,
Atlanta, GA
, Dec. 15–17, pp.
603
608
.10.1109/CDC.2010.5717110
20.
Wang
,
X.
,
Yaz
,
E. E.
, and
Yaz
,
Y. I.
,
2011
, “
Robust and Resilient State Dependent Control of Discrete-Time Nonlinear Systems With General Performance Criteria
,”
Proceedings of the 18th IFAC World Congress
,
Milano, Italy
, Aug. 29–Sept. 3, pp.
10904
10909
.
21.
Cloutier
,
J. R.
,
D'Souza
,
C. N.
, and
Mracek
,
C. P.
,
1996
, “
Nonlinear Regulation and Nonlinear Control Via the State-Dependent Riccati Equation Technique—Part 1 Theory, Part 2 Examples
,”
Proceedings of First International Conference on Nonlinear Problems in Aviation and Aerospace
,
Daytona Beach, FL
, May 9–11, pp.
117
141
.
22.
Cloutier
,
J. R.
,
1997
, “
State-Dependent Riccati Equation Techniques: An Overview
,”
Proceedings of the American Control Conference
,
Albuquerque, MN
, June 4-6, pp.
932
936
.10.1109/ACC.1997.609663
23.
Hull
,
R. A.
,
Cloutier
,
J. R.
,
Mracek
,
C. P.
, and
Stansbery
,
D. T.
,
1998
, “
State-Dependent Riccati Equation Solution of the Toy Nonlinear Optimal Control Problem
,”
Proceedings of the American Control Conference
, Vol 3,
Philadelphia, PA
, June 24–26, pp.
1658
1662
.10.1109/ACC.1998.707288
24.
Dutka
,
A. S.
,
Ordys
,
A. W.
, and
Grimble
,
M. J.
,
2005
, “
Optimized Discrete-Time State Dependent Riccati Equation Regulator
,”
Proceedings of the American Control Conference
,
Portland, OR
, June 8–10, pp.
2293
2298
.10.1109/ACC.2005.1470311
25.
Bogdanov
,
A.
,
Wan
,
E.
, and
Harvey
,
G.
,
2004
, “
SDRE Flight Control for X-Cell and R-Max Autonomous Helicopters
,”
Proceedings of the 43rd IEEE Conference on Decision and Control
(
CDC
), Vol.
2
,
Nassau, Bahamas
, Dec. 14–17, pp.
1196
1203
.10.1109/CDC.2004.1430204
26.
Fujimoto
,
T.
,
Tabuchi
,
F.
, and
Yokoyama
,
T.
,
2010
, “
Digital Control of Single Phase PWM Inverter Using SDRE Approach
,”
Proceedings of the International Power Electronics Conference
(
ECCE ASIA
),
Sapporo, Japan
, June 21–24, pp.
1258
1261
.10.1109/IPEC.2010.5544643
27.
Uchida
,
H.
,
Fujimoto
,
T.
, and
Yokoyama
,
T.
,
2011
, “
SDRE Control of Single Phase PWM Inverter Using FPGA Based Hardware Controller
,”
Proceedings of the IEEE Energy Conversion Congress and Exposition
,
Phoenix, AZ
, Sept. 16–21, pp.
3708
3713
.10.1109/ECCE.2011.6064272
28.
Yoshida
,
K.
,
Ohsaki
,
H.
, and
Iwase
,
M.
,
2012
, “
Optimality Recovery of Feedback Control System Based on Discrete-Time State Dependent Riccati Equation
,”
IEEE International Conference on Control Applications
,
Dubrovnik, Croatia
, Oct. 3–5, pp.
463
469
.10.1109/CCA.2012.6402729
29.
Cimen
,
T.
,
2008
, “
State Dependent Riccati Equation (SDRE) Control: A Survey
,”
Proceedings of the 17th World Congress, the International Federation of Automatic Control
,
Seoul, South Korea
, July 6–11, pp.
3761
3775
.
30.
Cimen
,
T.
,
2010
, “
Systematic and Effective Design of Nonlinear Feedback Controllers Via the State-Dependent Riccati Equation (SDRE) Method
,”
Annu. Rev. Control
,
34
(
1
), pp.
32
51
.10.1016/j.arcontrol.2010.03.001
31.
Cimen
,
T.
,
2012
, “
Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis
,”
J. Guid., Control, Dyn.
,
35
(
4
), pp.
1025
1047
.10.2514/1.55821
32.
Erdem
,
E. B.
, and
Alleyne
,
A. G.
,
2004
, “
Design of a Class of Nonlinear Controllers Via State Dependent Riccati Equations
,”
IEEE Trans. Control Syst. Technol.
,
12
(
1
), pp.
133
137
.10.1109/TCST.2003.819588
33.
Wang
,
X.
,
Yaz
,
E. E.
,
Schneider
,
S. C.
, and
Yaz
,
Y. I.
,
2011
, “
H2-H Control of Discrete Time Nonlinear Systems Using SDRE Approach
,”
ASME Paper No. DSCC2011-5935
.10.1115/DSCC2011-5935
34.
Wang
,
X.
,
Yaz
,
E. E.
, and
Schneider
,
S. C.
,
2018
, “
Coupled State-Dependent Riccati Equation Control for Continuous Time Nonlinear Mechatronics Systems
,”
ASME Paper No. DS-17-1590
.10.1115/DS-17-1590
35.
Aliyu
,
M. D. S.
,
2011
,
Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations
,
CRC Press
,
Boca Raton, FL
.
36.
Masaki
,
I.
,
Pan
,
Y.
, and
Furuta
,
K.
,
2008
, “
Swing-Up of Furuta Pendulum by Nonlinear Sliding Mode Control
,”
SICE J. Control, Meas., Syst. Integr.
,
1
(
1
), pp.
12
17
.10.9746/jcmsi.1.12
37.
Hernández-Guzmán
,
V. M.
,
Antonio-Cruz
,
M.
, and
Silva-Ortigoza
,
R.
,
2016
, “
Linear State Feedback Regulation of a Furuta Pendulum: Design Based on Differential Flatness and Root Locus
,”
IEEE Access
,
4
, pp.
8721
8736
.10.1109/ACCESS.2016.2637822
You do not currently have access to this content.