Abstract

This paper presents a novel framework of symbolic time series analysis (STSA) for anomaly detection in dynamical systems. The core concept is built upon a property of measure-preserving transformation (MPT) sequence, acting on a probability space with ergodic measure, that the eigenfunctions of these transformations would be time-invariant. As a result, unlike a standard STSA that is required to generate time-homogeneous Markov chains, the proposed MPT-based STSA is allowed to have time-inhomogeneous Markov chains, where the (possibly time-varying) state transition probability matrices have time-invariant eigenvectors. Such a time-invariance facilitates analysis of the dynamical system by using short-length time series of measurements. This is particularly important in applications, where the underlying dynamics and process anomalies need fast monitoring and control actions in order to mitigate any potential structural damage and/or to avoid catastrophic failures. The MPT-based STSA has been applied for low-delay detection of fatigue damage, which is a common source of failures in mechanical structures and which is known to have uncertain dynamical characteristics. The underlying algorithm has been validated with experimental data generated from a laboratory apparatus that uses ultrasonic sensors to detect fatigue damage in polycrystalline–alloy specimens. The performance of the proposed MPT-based STSA is evaluated by comparison with those of a standard STSA and a hidden Markov model (HMM) on the same experimental data. The results consistently show superior performance of the MPT-based STSA.

References

1.
Chamroukhi
,
F.
,
Same
,
A.
,
Govaert
,
G.
, and
Aknin
,
P.
,
2009
, “
Time Series Modeling by a Regression Approach Based on a Latent Process
,”
Neural Networks
,
22
(
5–6
), pp.
593
602
.10.1016/j.neunet.2009.06.040
2.
Frick
,
K.
,
Munk
,
A.
, and
Sieling
,
H.
,
2014
, “
Multiscale Change Point Inference
,”
J R. Stat Soc. Ser. B: Stat. Methol.
,
76
(
3
), pp.
495
580
.10.1111/rssb.12047
3.
Page
,
E. S.
,
1954
, “
Continuous Inspection Schemes
,”
Biometrika
,
41
(
1–2
), pp.
100
115
.10.2307/2333009
4.
Basseville
,
M.
, and
Nikiforov
,
I. V.
,
1993
,
Detection of Abrupt Changes—Theory and Application
,
Prentice Hall
,
Englewood Cliffs, NJ
.
5.
Rabiner
,
L.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
.10.1109/5.18626
6.
Dorj
,
E.
, and
Chen
,
C.
,
2013
, “
Anomaly Detection Approach Using Hidden Markov Model
,”
IEEE Aerospace Conference
, Ulaanbaatar, Mongolia, June 28–July 1, pp.
1
10
.10.1109/IFOST.2013.6616874
7.
Fridlyand
,
J.
,
Snijders
,
A. M.
,
Pinkel
,
D.
,
Albertson
,
D. G.
, and
Jain
,
A. N.
,
2004
, “
Hidden Markov Models Approach to the Analysis of Array CGH Data
,”
J. Mult. Anal.
,
90
(
1
), pp.
132
153
.10.1016/j.jmva.2004.02.008
8.
Blanding
,
W. R.
,
Willett
,
P. K.
,
Bar-Shalom
,
Y.
, and
Coraluppi
,
S.
,
2009
, “
Multisensor Track Management for Targets With Fluctuating Snr
,”
IEEE Trans. Aero Elect. Sys.
,
45
(
4
), pp.
1275
1292
.10.1109/TAES.2009.5310298
9.
Zhang
,
Y.
,
Brady
,
M.
, and
Smith
,
S.
,
2001
, “
Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm
,”
IEEE Trans. Med. Imaging
,
20
(
1
), pp.
45
57
.10.1109/42.906424
10.
Mondal
,
S.
,
Ghalyan
,
N. F.
,
Ray
,
A.
, and
Mukhopadhyay
,
A.
,
2019
, “
Early Detection of Thermoacoustic Instabilities Using Hidden Markov Models
,”
Combust. Sci. Technol.
,
191
(
8
), pp.
1309
1336
.10.1080/00102202.2018.1523900
11.
Ghalyan
,
N. F.
,
Mondal
,
S.
,
Miller
,
D. J.
, and
Ray
,
A.
,
2019
, “
Hidden Markov Modeling-Based Decision-Making Using Short-Length Sensor Time Series
,”
ASME J. Dyn. Sys. Meas. Control
,
141
(
10
), p.
104502
.
12.
Ghalyan
,
N.
,
2019
, “
Sequential Machine Learning for Decision Making in Mechanical Systems
,” Ph.D. thesis,
Pennsylvania State University
, University Park, PA.
13.
Beim Graben
,
P.
,
2001
, “
Estimating and Improving the Signal-to-Noise Ratio of Time Series by Symbolic Dynamics
,”
Phys. Rev. E
,
64
(
5
), p.
051104
.10.1103/PhysRevE.64.051104
14.
Daw
,
C. S.
,
Finney
,
C. E. A.
, and
Tracy
,
E. R.
,
2003
, “
A Review of Symbolic Analysis of Experimental Data
,”
Rev. Sci. Instrum.
,
74
(
2
), pp.
915
930
.10.1063/1.1531823
15.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
16.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis Via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
17.
Gupta
,
S.
, and
Ray
,
A.
,
2007
, “
Symbolic Dynamic Filtering for Data-Driven Pattern Recognition
,”
Pattern Recognition: Theory and Application
, Chap. 2,
E. A.
Zoeller
, ed.,
Nova Science Publishers
,
Hauppage, NY
.
18.
Subbu
,
A.
, and
Ray
,
A.
,
2008
, “
Space Partitioning Via Hilbert Transform for Symbolic Time Series Analysis
,”
Appl. Phys. Lett.
,
92
(
8
), p.
084107
.10.1063/1.2883958
19.
Sarkar
,
S.
,
Chattopdhyay
,
P.
, and
Ray
,
A.
,
2016
, “
Symbolization of Dynamic Data-Driven Systems for Signal Representation
,”
Signal, Image, Video Process.
,
10
(
8
), pp.
1535
1542
.10.1007/s11760-016-0967-5
20.
Ghalyan
,
N. F.
,
Miller
,
D. J.
, and
Ray
,
A.
,
2018
, “
A Locally Optimal Algorithm for Estimating a Generating Partition From an Observed Time Series and Its Application to Anomaly Detection
,”
Neural Comput.
,
30
(
9
), pp.
2500
2529
.10.1162/neco_a_01101
21.
Dupont
,
P.
,
Denis
,
F.
, and
Esposito
,
Y.
,
2005
, “
Links Between Probabilistic Automata and Hidden Markov Models: Probability Distributions, Learning Models and Induction Algorithms
,”
Pattern Recognit.
,
38
(
9
), pp.
1349
1371
.10.1016/j.patcog.2004.03.020
22.
Vidal
,
E.
,
Thollard
,
F.
,
de la Higuera
,
C.
,
Casacuberta
,
F.
, and
Carrasco
,
R.
,
2005
, “
Probabilistic Finite-State machines—Part I and Part II
,”
IEEE Trans. Pattern Anal. Mach. Intel.
,
27
(
7
), pp.
1013
1039
.10.1109/TPAMI.2005.147
23.
Mukherjee
,
K.
, and
Ray
,
A.
,
2014
, “
State Splitting and Merging in Probabilistic Finite State Automata for Signal Representation and Analysis
,”
Signal Process.
,
104
, pp.
105
119
.10.1016/j.sigpro.2014.03.045
24.
Rao
,
C.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
,
2009
, “
Review and Comparative Evaluation of Symbolic Dynamic Filtering for Detection of Anomaly Patterns
,”
Signal, Image, Video Process.
,
3
(
2
), pp.
101
114
.10.1007/s11760-008-0061-8
25.
Bahrampour
,
S.
,
Ray
,
A.
,
Sarkar
,
S.
,
Damarla
,
T.
, and
Nasrabadi
,
N.
,
2013
, “
Performance Comparison of Feature Extraction Algorithms for Target Detection and Classification
,”
Pattern Recognit. Lett.
,
34
(
16
), pp.
2126
2134
.10.1016/j.patrec.2013.06.021
26.
Hajek
,
B.
,
2015
,
Random Processes for Engineers
,
Cambridge University Press
,
Cambridge, UK
.
27.
Beck
,
C.
, and
Schlögl
,
F.
,
1993
,
Thermodynamics of Chaotic Systems: An Introduction
,
Cambridge University Press
, Cambridge, UK.
28.
Halmos
,
P.
,
2017
,
Lectures on Ergodic Theory
(
Dover Books on Mathematics), Dover Publications
,
New York
.
29.
Aeran
,
A.
,
Siriwardane
,
S.
,
Mikkelsen
,
O.
, and
Langen
,
I.
,
2017
, “
A New Nonlinear Fatigue Damage Model Based Only on s-n Curve Parameters
,”
Int. J. Fatigue
,
103
, pp.
327
341
.10.1016/j.ijfatigue.2017.06.017
30.
Walters
,
P.
,
2000
,
An Introduction to Ergodic Theory
(
Graduate Texts in Mathematics), Springer
,
New York
.
31.
Billingsley
,
P.
,
1965
,
Ergodic Theory and Information
,
Wiley
,
New York
.
32.
Lasota
,
A.
, and
Mackey
,
M.
,
1994
,
Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics
, 2nd ed.,
Springer-Verlag
,
New York
.
33.
Cornfeld
,
I.
,
Fomin
,
S.
, and
Sinai
,
Y.
,
1982
,
Ergodic Theory
,
Springer-Verlag
,
New York
.
34.
Keynes
,
H. B.
, and
Robertson
,
J. B.
,
1969
, “
Eigenvalue Theorems in Topological Transformation Groups
,”
Trans. Am. Math. Soc.
,
139
(
1969
), pp.
359
369
.10.1090/S0002-9947-1969-0237748-5
35.
Berman
,
A.
, and
Plemmons
,
R.
,
1994
,
Nonnegative Matrices in the Mathematical Sciences
,
SIAM Press
,
Philadelphia, PA
.
36.
Murphy
,
K.
,
2012
,
Machine Learning: A Probabilistic Perspective
, 1st ed.,
The MIT Press
,
Cambridge, MA
.
37.
Cover
,
T.
, and
Thomas
,
J.
,
2006
,
Elements of Information Theory
,
Wiley-Interscience
,
Hoboken, NJ
.
38.
McDonough
,
R. N.
, and
Whalen
,
A. D.
,
1995
,
Detection of Signals in Noise
, 2nd ed.,
Academic Press
,
Boston, MA
.
39.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
40.
Pastor
,
D.
, and
Nguyen
,
Q.-T.
,
2013
, “
Random Distortion Testing and Optimality of Thresholding Tests
,”
IEEE Trans. Signal Process.
,
61
(
16
), pp.
4161
4171
.10.1109/TSP.2013.2265680
41.
Hauser
,
M.
,
Fu
,
Y.
,
Phoha
,
S.
, and
Ray
,
A.
,
2018
, “
Neural Probabilistic Forecasting of Symbolic Sequences With Long Short-Term Memory
,”
ASME J. Dyn. Sys. Meas. Control
,
1
40
(
3
), p.
084502
.10.1115/1.4039281
42.
Schmid
,
P.
, August
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
(
2
), pp.
5
28
.10.1017/S0022112010001217
You do not currently have access to this content.