Abstract

This paper discusses an experimental validation of a real-time augmented control scheme for an organic Rankine cycle (ORC) waste heat recovery (WHR) system. A nonlinear model predictive control (NMPC) is designed to regulate the working fluid vapor temperature after the evaporator. The NMPC utilizes a six-state reduced order moving boundary (MB) evaporator model. The state estimator is constructed using an extended Kalman filter (EKF) given the working fluid outlet vapor temperature and exhaust gas outlet temperature as measurements. Working fluid evaporation pressure is controlled by an external proportional-integral-derivative (PID) control loop. The experimental validation first compares the performance of the augmented control scheme with that of a traditional multiple loop PID control with a feedforward term over an engine transient. The experimental study shows that the augmented control scheme outperforms the baseline multiloop PID control in both terms tracking error and settling time during transient engine operation. The performance of the augmented control scheme is further validated over three additional transient conditions with alterations to both the engine transient and the working fluid reference temperature. The NMPC validation shows that the working fluid vapor temperature can be controlled within 1% error margin relative to the targeted reference.

References

1.
Park
,
T.
,
Teng
,
H.
,
Hunter
,
G. L.
,
Velde
,
B. V. D.
, and
Klaver
,
J.
,
2011
, “
A Rankine Cycle System for Recovering Waste Heat From HD Diesel Engines—Experimental Results
,”
SAE
Paper No. 2011-01-1337.10.4271/2011-01-1337
2.
Stanton
,
D. W.
,
2013
, “
Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations
,”
SAE Int. J. Engines
,
6
(
3
), pp.
1395
1480
.10.4271/2013-01-2421
3.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2019
, “
A Comprehensive Review of Organic Rankine Cycle Waste Heat Recovery Systems in Heavy-Duty Diesel Engine Applications
,”
Renewable Sustainable Energy Rev.
,
107
, pp.
145
170
.10.1016/j.rser.2019.03.012
4.
Shu
,
G.
,
Yu
,
G.
,
Tian
,
H.
,
Wei
,
H.
,
Liang
,
X.
, and
Huang
,
Z.
,
2016
, “
Multi-Approach Evaluations of a Cascade-Organic Rankine Cycle (C-ORC) System Driven by Diesel Engine Waste Heat—Part A: Thermodynamic Evaluations
,”
Energy Convers. Manage.
,
108
, pp.
579
595
.10.1016/j.enconman.2015.10.084
5.
Teng
,
H.
, and
Regner
, G.
,
2009
, “
Improving Fuel Economy for HD Diesel Engines With WHR Rankine Cycle Driven by EGR Cooler Heat Rejection
,”
SAE
Paper No. 2009-01-2913.10.4271/2009-01-2913
6.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2007
, “
Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle—Part II: Working Fluids for WHR-ORC
,”
SAE
Paper No. 2005-01-0543.10.4271/2005-01-0543
7.
Teng
,
H.
,
Klaver
,
J.
,
Park
,
T.
,
Hunter
,
G. L.
, and
Velde
,
B. V. D.
,
2011
, “
A Rankine Cycle System for Recovering Waste Heat From HD Diesel Engines—WHR System Development
,”
SAE
Paper No. 2011-01-0311.10.4271/2011-01-0311
8.
Nelson
,
C.
,
2008
, “
Exhaust Energy Recovery
,”
DEER Conference,
Dearborn, MI, Aug.
4
7
.
9.
Nelson
,
C.
,
2009
, “
Exhaust Energy Recovery
,”
Annual Merit Review
, Project No. ACE041, Washington, DC, May
18
22
.
10.
Nelson
,
C.
,
2010
, “
Exhaust Energy Recovery
,”
Annual Merit Review
, Project No. ACE041, Washington, DC, June
7
11
.
11.
Feru
,
E.
,
de Jager
,
B.
,
Willems
,
F.
, and
Steinbuch
,
M.
,
2014
, “
Two-Phase Plate-Fin Heat Exchanger Modeling for Waste Heat Recovery Systems in Diesel Engines
,”
Appl. Energy
,
133
, pp.
183
196
.10.1016/j.apenergy.2014.07.073
12.
Quoilin
,
S.
,
Aumann
,
R.
,
Grill
,
A.
,
Schuster
,
A.
,
Lemort
,
V.
, and
Spliethoff
,
H.
,
2011
, “
Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Energy
,
88
(
6
), pp.
2183
2190
.10.1016/j.apenergy.2011.01.015
13.
Feru
,
E.
,
Willems
,
F.
,
de Jager
,
B.
, and
Steinbuch
,
M.
,
2014
, “
Model Predictive Control of a Waste Heat Recovery System for Automotive Diesel Engines
,”
Proceedings of the 18th International Conference on System Theory
, Sinaia, Romania, Oct. 17–19, pp.
658
663
.10.1109/ICSTCC.2014.6982492
14.
Esposito
,
M. C.
,
Pompini
,
N.
,
Gambarotta
,
A.
,
Chandrasekaran
,
V.
,
Zhou
,
J.
, and
Canova
,
M.
,
2015
, “
Nonlinear Model Predictive Control of an Organic Rankine Cycle for Exhaust Waste Heat Recovery in Automotive Engines
,”
IFAC-PapersOnLine
,
48
(
15
), pp.
411
418
.10.1016/j.ifacol.2015.10.059
15.
Rathod
,
D.
,
Xu
,
B.
,
Yebi
,
A.
,
Vahidi
,
A.
,
Filipi
,
Z.
, and
Hoffman
,
M.
,
2019
, “
A Look-Ahead Model Predictive Control Strategy for an Organic Rankine Cycle-Waste Heat Recovery System in a Heavy Duty Diesel Engine Application
,”
SAE
Paper No. 0148-7191.10.4271/0148-7191
16.
Rathod
,
D.
,
Xu
,
B.
,
Filipi
,
Z.
, and
Hoffman
,
M.
,
2019
, “
An Experimentally Validated, Energy Focused, Optimal Control Strategy for an Organic Rankine Cycle Waste Heat Recovery System
,”
Appl. Energy
,
256
, p.
113991
.10.1016/j.apenergy.2019.113991
17.
Hou
,
G.
,
Sun
,
R.
,
Hu
,
G.
, and
Zhang
,
J.
,
2011
, “
Supervisory Predictive Control of Evaporator in Organic Rankine Cycle (ORC) System for Waste Heat Recovery
,”
Advanced Mechatronic Systems (ICAMechS), Zhengzhou
, China, Aug. 11–13, pp.
306
311
.
18.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
, and
Filipi
,
Z.
,
2020
, “
A Comparative Analysis of Real-Time Power Optimization for Organic Rankine Cycle Waste Heat Recovery Systems
,”
Appl. Therm. Eng.
,
164
, p.
114442
.10.1016/j.applthermaleng.2019.114442
19.
Xu
,
B.
,
Yebi
,
A.
,
Rathod
,
D.
, and
Filipi
,
Z.
,
2019
, “
Real-Time Realization of Dynamic Programming Using Machine Learning Methods for IC Engine Waste Heat Recovery System Power Optimization
,”
Appl. Energy
, 262, p.
114514
.10.1016/j.apenergy.2020.114514
20.
Hernandez
,
A.
,
Desideri
,
A.
,
Ionescu
,
C.
,
Quoilin
,
S.
,
Lemort
,
V.
, and
Keyser
,
R. D.
,
2014
, “
Increasing the Efficiency of Organic Rankine Cycle Technology by Means of Multivariable Predictive Control
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
2195
2200
.10.3182/20140824-6-ZA-1003.01796
21.
Hernandez
,
A.
,
Desideri
,
A.
,
Gusev
,
S.
,
Ionescu
,
C. M.
,
Van Den Broek
,
M.
,
Quoilin
,
S.
,
Lemort
,
V.
, and
De Keyser
,
R.
,
2017
, “
Design and Experimental Validation of an Adaptive Control Law to Maximize the Power Generation of a Small-Scale Waste Heat Recovery System
,”
Appl. Energy
,
203
, pp.
549
559
.10.1016/j.apenergy.2017.06.069
22.
Yebi
,
A.
,
Xu
,
B.
,
Liu
,
X.
,
Shutty
,
J.
,
Anschel
,
P.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2017
, “
Estimation and Predictive Control of a Parallel Evaporator Diesel Engine Waste Heat Recovery System
,”
IEEE Trans. Control Syst. Technol.
, 27(1), pp.
282
2954
.10.1109/TCST.2017.2759104
23.
Peralez
,
J.
,
Nadri
,
M.
,
Dufour
,
P.
,
Tona
,
P.
, and
Sciarretta
,
A.
,
2017
, “
Organic Rankine Cycle for Vehicles: Control Design and Experimental Results
,”
IEEE Trans. Control Syst. Technol.
,
25
(
3
), pp.
952
965
.10.1109/TCST.2016.2574760
24.
Xu
,
B.
,
Liu
,
X.
,
Shutty
,
J.
,
Anschel
,
P.
,
Onori
,
S.
,
Filipi
,
Z.
,
2016
, and
M.
, and
Hoffman
, “
Physics-Based Modeling and Transient Validation of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications
,”
SAE
Paper No. 2016-01-0199.10.4271/2016-01-0199
25.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
,
Onori
,
S.
,
Filipi
,
Z.
, and
Hoffman
,
M.
,
2020
, “
A Comparative Analysis of Dynamic Evaporator Models for Organic Rankine Cycle Waste Heat Recovery Systems
,”
Appl. Therm. Eng.
,
165
, p.
114576
.10.1016/j.applthermaleng.2019.114576
26.
Xu
,
B.
,
Rathod
,
D.
,
Kulkarni
,
S.
,
Yebi
,
A.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2017
, “
Transient Dynamic Modeling and Validation of an Organic Rankine Cycle Waste Heat Recovery System for Heavy Duty Diesel Engine Applications
,”
Appl. Energy
,
205
, pp.
260
279
.10.1016/j.apenergy.2017.07.038
27.
Peralez
,
J.
,
Tona
,
P.
,
Lepreux
,
O.
,
Sciarretta
,
A.
,
Voise
,
L.
,
Dufour
,
P.
, and
Nadri
,
M.
,
2013
, “
Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery From a Heavy-Duty Diesel Engine Using a Model-Based Approach
,”
IEEE 52nd Annual Conference on Decision and Control
(
CDC
), Florence, Italy, Dec. 10–13, pp.
6830
6836
. 10.1109/CDC.2013.6760971
28.
Jensen
,
J. M.
,
2003
, “
Dynamic Modeling of Thermo-Fluid Systems With Focus on Evaporators for Refrigeration
,” Ph.D. thesis, Energy Engineering, Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark.
29.
Xu
,
B.
,
Yebi
,
A.
,
Onori
,
S.
,
Filipi
,
Z.
,
Liu
,
X.
,
Shutty
,
J.
,
Anschel
,
P.
, and
Hoffman
,
M.
,
2017
, “
Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications
,”
SAE Int. J. Altern. Powertrains
,
6
(
1
), pp.
25
33
.10.4271/2017-01-0133
30.
Houska
,
B.
,
Ferreau
,
H. J.
, and
Diehl
,
M.
,
2011
, “
ACADO Toolkit—An Open-Source Framework for Automatic Control and Dynamic Optimization
,”
Optimal Control Appl. Methods
,
32
(
3
), pp.
298
312
.10.1002/oca.939
31.
Frasch
,
J. V.
,
Gray
,
A.
,
Zanon
,
M.
,
Ferreau
,
H. J.
,
Sager
,
S.
,
Borrelli
,
F.
, and
Diehl
,
M.
,
2013
, “
An Auto-Generated Nonlinear MPC Algorithm for Real-Time Obstacle Avoidance of Ground Vehicles
,”
European Control Conference
(
ECC
), Zurich, Switzerland, July 17–19, pp.
4136
4141
.10.23919/ECC.2013.6669836
32.
YebiXu
,
A.
,
Liu
,
B.
,
Shutty
,
X.
,
Anschel
,
J.
,
Onori
,
P.
,
Filipi
,
S. Z.
, and
Hoffman
,
M.
,
2016
, “
Nonlinear Model Predictive Control Strategies for a Parallel Evaporator Diesel Engine Waste Heat Recovery System
,”
ASME
Paper No. DSCC2016-9801.10.1115/DSCC2016-9801
You do not currently have access to this content.