Balancing plays a major role in performance improvement of robotic manipulators. From an optimization point of view, some balancing parameters can be modified to decrease motion cost. Recently introduced, this concept is called optimal balancing: an umbrella term for static balancing and other balancing methods. In this method, the best combination of balancing and trajectory planning is sought. In this note, repetitive full cycle motion of robot manipulators including different subtasks is considered. The basic idea arises from the fact that, upon changing dynamic equations of a robotic manipulator or cost functions in subtasks, the entire cycle of motion must be reconsidered in an optimal balancing problem. The possibility of cost reduction for a closed contour in potential fields is shown by some simulations done for a PUMA-like robot. Also, the obtained results show 34.8% cost reduction compared to that of static balancing.

References

1.
Zhang
,
Q.
, and
Zhao
,
M.-Y.
,
2016
, “
Minimum Time Path Planning of Robotic Manipulator in Drilling/Spot Welding Tasks
,”
J. Comput. Des. Eng.
,
3
(
2
), pp.
132
139
.
2.
Gosselin
,
C.
, and
Foucault
,
S.
,
2014
, “
Dynamic Point-to-Point Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
728
736
.
3.
Spielberg
,
A.
,
Araki
,
B.
,
Sung
,
C.
,
Tedrake
,
R.
, and
Rus
,
D.
,
2017
, “
Functional Co-Optimization of Articulated Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
5035
5042
.
4.
von Stryk
,
O.
, and
Bulirsch
,
R.
,
1992
, “
Direct and Indirect Methods for Trajectory Optimization
,”
Ann. Oper. Res.
,
37
(
1
), pp.
357
373
.
5.
Nikoobin
,
A.
, and
Moradi
,
M.
,
2017
, “
Indirect Solution of Optimal Control Problems With State Variable Inequality Constraints: Finite Difference Approximation
,”
Robotica
,
35
(
1
), pp.
50
72
.
6.
Gasparetto
,
A.
,
Lanzutti
,
A.
,
Vidoni
,
R.
, and
Zanotto
,
V.
,
2011
, “
Validation of Minimum Time-Jerk Algorithms for Trajectory Planning of Industrial Robots
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031003
.
7.
Ghanaatpishe
,
M.
, and
Fathy
,
H. K.
,
2017
, “
On the Structure of the Optimal Solution to a Periodic Drug-Delivery Problem
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
7
), p.
071001
.
8.
Pappalardo
,
C. M.
, and
Guida
,
D.
,
2017
, “
Adjoint-Based Optimization Procedure for Active Vibration Control of Nonlinear Mechanical Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
8
), p.
081010
.
9.
Wang
,
Z.
, and
Li
,
Y.
,
2017
, “
An Indirect Method for Inequality Constrained Optimal Control Problems
,”
IFAC PapersOnLine
,
50
(
1
), pp.
4070
4075
.
10.
Fabien
,
B. C.
,
2013
, “
Indirect Solution of Inequality Constrained and Singular Optimal Control Problems Via a Simple Continuation Method
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021003
.
11.
Diken
,
H.
,
1995
, “
Effect of Mass Balancing on the Actuator Torques of a Manipulator
,”
Mech. Mach. Theory
,
30
(
4
), pp.
495
500
.
12.
Boisclair
,
J.
,
Richard
,
P.-L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2017
, “
Gravity Compensation of Robotic Manipulators Using Cylindrical Halbach Arrays
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
457
464
.
13.
Arakelian
,
V.
,
2017
, “
Inertia Forces and Moments Balancing in Robot Manipulators: A Review
,”
Adv. Rob.
,
31
(
14
), pp.
717
726
.
14.
Moradi
,
M.
,
Nikoobin
,
A.
, and
Azadi
,
S.
,
2010
, “
Adaptive Decoupling for Open Chain Planar Robots
,”
Sci. Iran. Trans. B
,
17
(
5
), pp.
376
386
.http://scientiairanica.sharif.edu/article_3336.html
15.
Herman
,
P.
,
2008
, “
Dynamical Couplings Reduction for Rigid Manipulators Using Generalized Velocity Components
,”
Mech. Res. Commun.
,
35
(
8
), pp.
553
561
.
16.
Nikoobin
,
A.
, and
Moradi
,
M.
,
2011
, “
Optimal Balancing of Robot Manipulators in Point-to-Point Motion
,”
Robotica
,
29
(
02
), pp.
233
244
.
17.
Nikoobin
,
A.
,
Moradi
,
M.
, and
Esmaili
,
A.
,
2013
, “
Optimal Spring Balancing of Robot Manipulators in Point-to-Point Motion
,”
Robotica
,
31
(
4
), pp.
611
621
.
18.
Ansari
,
A.
, and
Murphey
,
T.
,
2015
, “
Minimum Sensitivity Control for Planning With Parametric and Hybrid Uncertainty
,”
Int. J. Rob. Res.
,
35
(
7
), pp. 823–839.
19.
Kierzenka
,
J.
, and
Shampine
,
L. F.
,
2001
, “
A BVP Solver Based on Residual Control and the Matlab PSE
,”
ACM Trans. Math. Software (TOMS)
,
27
(
3
), pp.
299
316
.
20.
Kebria
,
P. M.
,
Abdi
,
H.
, and
Nahavandi
,
S.
,
2016
, “
Development and Evaluation of a Symbolic Modelling Tool for Serial Manipulators With Any Number of Degrees of Freedom
,”
IEEE International Conference on Systems, Man, and Cybernetics
(
SMC
), Budapest, Hungary, Oct. 9–12, p.
004223
.
21.
Herman
,
P.
,
2009
, “
Dynamical Couplings Analysis of Rigid Manipulators
,”
Meccanica
,
44
(
1
), pp.
61
70
.
You do not currently have access to this content.