Real-time detection and decision and control of thermoacoustic instabilities in confined combustors are challenging tasks due to the fast dynamics of the underlying physical process. The objective here is to develop a dynamic data-driven algorithm for detecting the onset of instabilities with short-length time-series data, acquired by available sensors (e.g., pressure and chemiluminescence), which will provide sufficient lead time for active decision and control. To this end, this paper proposes a Bayesian nonparametric method of Markov modeling for real-time detection of thermoacoustic instabilities in gas turbine engines; the underlying algorithms are formulated in the symbolic domain and the resulting patterns are constructed from symbolized pressure measurements as probabilistic finite state automata (PFSA). These PFSA models are built upon the framework of a (low-order) finite-memory Markov model, called the D-Markov machine, where a Bayesian nonparametric structure is adopted for: (i) automated selection of parameters in D-Markov machines and (ii) online sequential testing to provide dynamic data-driven and coherent statistical analyses of combustion instability phenomena without solely relying on computationally intensive (physics-based) models of combustion dynamics. The proposed method has been validated on an ensemble of pressure time series from a laboratory-scale combustion apparatus. The results of instability prediction have been compared with those of other existing techniques.

References

1.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2000
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(1), pp. 182–189.
2.
Dowling
,
A.
, and
Hubbard
,
S.
,
2000
, “
Instability in Lean Premixed Combustors
,”
Proc. Inst. Mech. Eng. Part A
,
214
(
4
), pp.
317
332
.
3.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
4.
Darema
,
F.
,
2005
, “
Dynamic Data Driven Applications Systems: New Capabilities for Application Simulations and Measurements
,”
Fifth International Conference on Computational Science
(
ICCS
), Atlanta, GA, May 22–25, pp. 610–615.https://doi.org/10.1007/11428848_79
5.
Sarkar
,
S.
,
Chakravarthy
,
S. R.
,
Ramanan
,
V.
, and
Ray
,
A.
,
2016
, “
Dynamic Data-Driven Prediction of Instability in a Swirl-Stabilized Combustor
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
235
253
.
6.
Nair
,
V.
, and
Sujith
,
R.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.
7.
Gianni
,
G.
,
Mariotti
,
G.
,
Paganini
,
E.
, and
Sello
,
S.
,
2003
, “
Characterization and Diagnostics of Combustion Thermoacoustic Instabilities Using Nonlinear Dynamics and Topological Methods
,” preprint
arXiv:Physics/0306199
. https://arxiv.org/ftp/physics/papers/0306/0306199.pdf
8.
Bühlmann
,
P.
, and
Wyner
,
A. J.
,
1999
, “
Variable Length Markov Chains
,”
Ann. Stat.
,
27
(
2
), pp.
480
513
.
9.
Teh
,
Y. W.
,
2006
, “
A Hierarchical Bayesian Language Model Based on Pitman-YOR Processes
,”
21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics
(
ACL
), Sydney, Australia, July 17–18, pp.
985
992
.
10.
Jääskinen
,
V.
,
Xiong
,
J.
,
Corander
,
J.
, and
Koski
,
T.
,
2014
, “
Sparse Markov Chains for Sequence Data
,”
Scand. J. Stat.
,
41
(
3
), pp.
639
655
.
11.
Jha
,
D. K.
,
Srivastav
,
A.
,
Mukherjee
,
K.
, and
Ray
,
A.
,
2015
, “
Depth Estimation in Markov Models of Time-Series Data Via Spectral Analysis
,”
American Control Conference
(
ACC
), Chicago, IL, July 1–3, pp.
5812
5817
.
12.
Hauser
,
M.
,
Li
,
Y.
,
Li
,
J.
, and
Ray
,
A.
,
2016
, “
Real-Time Combustion State Identification Via Image Processing: A Dynamic Data-Driven Approach
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
3316
3321
.
13.
Sarkar
,
S.
,
Lore
,
K. G.
, and
Sarkar
,
S.
,
2015
, “
Early Detection of Combustion Instability by Neural-Symbolic Analysis on Hi-Speed Video
,”
International Conference on Cognitive Computation: Integrating Neural and Symbolic Approaches
(
COCO
), Montreal, QC, Canada, Dec. 11–12, pp.
93
101
.http://dl.acm.org/citation.cfm?id=2996843
14.
Sen
,
S.
,
Sarkar
,
S.
,
Chaudhari
,
R. R.
,
Mukhopadhyay
,
A.
, and
Ray
,
A.
,
2017
,
Lean Blowout (LBO) Prediction Through Symbolic Time Series Analysis
,
Springer
,
Singapore
, pp.
153
167
.
15.
Sarkar
,
S.
,
Ray
,
A.
,
Mukhopadhyay
,
A.
, and
Sen
,
S.
,
2015
, “
Dynamic Data-Driven Prediction of Lean Blowout in a Swirl-Stabilized Combustor
,”
Int. J. Spray Combust. Dyn.
,
7
(
3
), pp.
209
241
.
16.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.
17.
Mukherjee
,
K.
, and
Ray
,
A.
,
2014
, “
State Splitting and Merging in Probabilistic Finite State Automata for Signal Representation and Analysis
,”
Signal Process.
,
104
, pp.
105
119
.
18.
Xiong
,
S.
,
Li
,
J.
, and
Ray
,
A.
,
2017
, “
Bayesian Nonparametric Modeling of Markov Chains for Detection of Thermoacoustic Instabilities
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp. 3758–3763.
19.
Sarkar
,
A.
, and
Dunson
,
D. B.
,
2015
, “
Bayesian Nonparametric Modeling of Higher Order Markov Chains
,” preprint
arXiv:1506.06268
. https://arxiv.org/abs/1506.06268
20.
Annaswamy
,
A. M.
, and
Ghoniem
,
A. F.
,
2002
, “
Active Control of Combustion Instability: Theory and Practice
,”
IEEE Control Syst.
,
22
(
6
), pp.
37
54
.
21.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis Via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.
22.
Yang
,
Y.
, and
Dunson
,
D. B.
,
2015
, “
Bayesian Conditional Tensor Factorizations for High-Dimensional Classification
,”
J. Am. Stat. Assoc.
, 111(514), pp. 656–669.http://dx.doi.org/10.1080/01621459.2015.1029129
23.
Pitman
,
J.
,
2002
,
Combinatorial Stochastic Processes
,
Springer
, Berlin.
24.
Ferguson
,
T. S.
,
1973
, “
A Bayesian Analysis of Some Nonparametric Problems
,”
Ann. Stat.
,
1
(
2
), pp.
209
230
.
25.
Ishwaran
,
H.
, and
James
,
L. F.
,
2001
, “
Gibbs Sampling Methods for Stick-Breaking Priors
,”
J. Am. Stat. Assoc.
,
96
(
453
), pp.
161
173
.
26.
Poor
,
H.
,
2013
,
An Introduction to Signal Detection and Estimation
,
Springer Science & Business Media
, New York.
27.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2010
, “
Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations
,”
Combust. Flame
,
157
(
9
), pp.
1731
1744
.
28.
Abarbanel
,
H.
,
1996
,
Analysis of Observed Chaotic Data
,
Springer
,
New York
.
29.
Nair
,
V.
,
Thampi
,
G.
,
Karuppusamy
,
S.
,
Gopalan
,
S.
, and
Sujith
,
R.
,
2013
, “
Loss of Chaos in Combustion Noise as a Precursor of Impending Combustion Instability
,”
Int. J. Spray Combust. Dyn.
,
5
(
4
), pp.
273
290
.
You do not currently have access to this content.