Finding natural frequencies and mode shapes for flexible structures can be a challenging problem. Although well-known approaches exist for single flexible links, the problem becomes increasingly more complex when dealing with multiple links. Spatial configurations add an additional layer of difficulty. This work presents a systematic method for finding the natural frequencies and mode-shapes for n-link serial structures using a transfer matrix approach. The method is validated by finite element analysis and experiments.

References

1.
Book
,
J. W.
, and
Majette
,
M.
,
1983
, “
Controller Design for Flexible, Distributed Parameter Mechanical Arms Via Combined State Space and Frequency Domain Techniques
,”
ASME J. Dyn. Syst., Meas., Control
,
105
(4), pp.
245
249
.
2.
Dubowsky
,
S.
,
1994
, “
Dealing With Vibrations in the Deployment Structures of Space Robotic Systems
,”
Fifth International Conference on Adaptive Structures
, Sendai, Japan, Dec. 5–7, pp.
5
7
.http://robots.mit.edu/publications/papers/1994_12_Dub.pdf
3.
Yang
,
Z.
, and
Sadler
,
P. J.
,
1988
, “
Large-Displacement Finite Element Analysis of Flexible Linkages
,”
ASME J. Mech. Des.
,
112
(2), pp. 175–182.
4.
Alberts
,
E. T.
,
Xia
,
H.
, and
Chen
,
Y.
,
1992
, “
Dynamic Analysis to Evaluate Viscoelastic Passive Damping Augmentation for the Space Shuttle Remote Manipulator System
,”
ASME J. Dyn. Syst., Meas., Control
,
114
(3), pp.
468
475
.
5.
Nagarajan
,
S.
, and
Turcic
,
A. D.
,
1990
, “
Lagrangian Formulation of the Equations of Motion for Elastic Mechanisms With Mutual Dependence Between Rigid Body and Elastic Motions—Part I: Element Level Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(2), pp.
203
214
.
6.
Lee
,
D. J.
, and
Wang
,
B.-L.
,
1988
, “
Optimal Control of a Flexible Robot Arm
,”
Comput. Struct.
,
29
(3), pp.
459
467
.
7.
Ginsberg
,
H. J.
,
2000
,
Mechanical and Structural Vibrations
,
Wiley
, Hoboken, NJ.
8.
Meirovitch
,
L.
,
1985
,
Elements of Vibration Analysis
,
McGraw-Hill
, New York.
9.
Book
,
W. J.
,
1974
, “
Modeling, Design and Control of Flexible Manipulator Arms
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/13783#files-area
10.
De Luca
,
A.
, and
Siciliano
,
B.
,
1990
, “
Explicit Dynamic Modeling of a Planar Two-Link Flexible Manipulator
,”
29th IEEE Conference on Decision and Control
(
CDC
), Honolulu, HI, Dec. 5–7, pp.
528
530
.
11.
Dado
,
M.
,
1983
, “
A Generalized Approach for Forward and Inverse Dynamics of Elastic Manipulators
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 7–10, Vol.
3
, pp.
359
364
.
12.
Subudhi
,
B.
, and
Morris
,
S. A.
,
2002
, “
Dynamic Modelling, Simulation and Control of a Manipulator With Flexible Links and Joints
,”
Rob. Auton. Syst.
,
41
(4), pp.
257
270
.
13.
di Castri
,
C.
, and
Messina
,
A.
,
2012
, “
Exact Modeling for Control of Flexible Manipulators
,”
J. Vib. Control
,
18
(10), pp.
1526
1551
.
14.
Milford
,
I. R.
, and
Asokanthan
,
F. S.
,
1999
, “
Configuration Dependent Eigenfrequencies for a Two-Link Flexible Manipulator: Experimental Verification
,”
J. Sound Vib.
,
222
(2), pp.
191
207
.
15.
Krauss
,
R.
,
2005
, “
An Improved Technique for Modeling and Control of Flexible Structures
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.http://hdl.handle.net/1853/11519
16.
De Luca
,
A.
, and
Book
,
W.
,
2006
, “
Robots With Flexible Elements
,”
Handbook of Robotics
,
Springer
, New York, pp.
287
319
.
17.
Chatterjee
,
P.
, and
Bryant
,
M.
,
2014
, “
Transfer Matrix Modeling of a Tensioned Piezo-Solar Hybrid Energy Harvesting Ribbon
,”
Proc. SPIE
,
9431
, p.
94310D
.
18.
Denavit
,
J.
,
1954
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
19.
Malzahn
,
J.
,
2014
, “
Modeling and Control of Multi-Elastic-Link Robots Under Gravity
,”
Ph.D. thesis
, TU Dortmund, Dortmund, Germany.https://eldorado.tu-dortmund.de/bitstream/2003/33694/1/Dissertation.pdf
You do not currently have access to this content.