This paper develops reduced order, linear models of lithium ion batteries that can be used for model-based power train simulation, design, estimation, and controlling in hybrid and electric vehicles (HEV). First, a reduced order model is derived from the fundamental governing electrochemical charge and Li+ conservation equations that are linearized at the operating state of charge and low current density. The equations are solved using analytical and numerical techniques to produce the transcendental impedance or transfer function from input current to output voltage. This model is then reduced to a low order state space model using a system identification technique based on least squares optimization. Given the prescribed current, the model predicts voltage and other variables such as electrolyte and electrode surface concentration distributions. The second model is developed by neglecting electrolyte diffusion and modeling each electrode with a single active material particle. The transcendental particle transfer functions are discretized using a Padé Approximation. The explicit form of the single particle model impedance can be realized by an equivalent circuit with resistances and capacitances related to the cell parameters. Both models are then tuned to match experimental electrochemical impedance spectroscopy (EIS) and pulse current-voltage data.

References

1.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 1. Background
,”
J. Power Sources
,
134
(
2
), pp.
252
261
.10.1016/j.jpowsour.2004.02.031
2.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 2. Modeling and Identification
,”
J. Power Sources
,
134
(
2
), pp.
262
276
.10.1016/j.jpowsour.2004.02.032
3.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.10.1016/j.jpowsour.2004.02.033
4.
Verbrugge
,
M. W.
, and
Conell
,
R. S.
,
2002
, “
Electrochemical and Thermal Characterization of Battery Modules Commensurate With Electric Vehicle Integration
,”
J. Electrochem. Soc.
,
149
(
1
), pp.
A45
A53
.10.1149/1.1426395
5.
Verbrugge
,
M. W.
, and
Conell
,
R. S.
,
2007
, “
Electrochemical Characterization of High-Power Lithium Ion Batteries Using Triangular Voltage and Current Excitation Sources
,”
J. Power Sources
,
174
(
1
), pp.
2
8
.10.1016/j.jpowsour.2007.03.019
6.
Chen
,
M.
, and
Rincon-Mora
,
G. A.
,
2006
, “
Accurate Electrical Battery Model Capable of Predicting Runtime and IV Performance
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
504
511
.10.1109/TEC.2006.874229
7.
Schweighofer
,
B.
,
Raab
,
K. M.
, and
Brasseur
,
G.
,
2003
, “
Modeling of High Power Automotive Batteries by the Use of an Automated Test System
,”
IEEE Trans. Instrum. Meas.
,
52
(
4
), pp.
1087
1091
.10.1109/TIM.2003.814827
8.
Moss
,
P. L.
,
Au
,
G.
,
Plichta
,
E. J.
, and
Zheng
,
J. P.
,
2008
, “
An Electrical Circuit for Modeling the Dynamic Response of Li-Ion Polymer Batteries
,”
J. Electrochem. Soc.
,
155
(
12
), pp.
A986
A994
.10.1149/1.2999375
9.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.10.1016/j.jpowsour.2011.10.013
10.
Dong
,
T. K.
,
Kirchev
,
A.
,
Mattera
,
F.
,
Kowal
,
J.
, and
Bultel
,
Y.
,
2011
, “
Dynamic Modeling of Li-Ion Batteries Using an Equivalent Electrical Circuit
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
A326
A336
.10.1149/1.3543710
11.
Hu
,
Y.
,
Yurkovich
,
S.
,
Guezennec
,
Y.
, and
Yurkovich
,
B. J.
,
2011
, “
Electro-Thermal Battery Model Identification for Automotive Applications
,”
J. Power Sources
,
196
, pp.
449
457
.10.1016/j.jpowsour.2010.06.037
12.
Doyle
,
M.
,
Fuller
,
T.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
, pp.
1526
1533
.10.1149/1.2221597
13.
Fuller
,
T.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
, pp.
1
10
.10.1149/1.2054684
14.
Smith
,
K. A.
,
Rahn
,
C. D.
, and
Wang
,
C.-Y.
,
2007
, “
Control Oriented 1D Electrochemical Model of Lithium Ion Battery
,”
Energy Convers. Manage.
,
48
, pp.
2565
2578
.10.1016/j.enconman.2007.03.015
15.
Domenico
,
D.
,
Di Fiengo
,
G.
, and
Stefanopoulou
,
A.
,
2008
, “
Lithium-Ion Battery State of Charge Estimation With a Kalman Filter Based on a Electrochemical Model
,”
Proceedings of IEEE International Conference on Control Applications CCA
, pp.
702
707
.
16.
Domenico
,
D. D.
,
Stefanopoulou
,
A.
, and
Fiengo
,
G.
,
2010
, “
Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061302
.10.1115/1.4002475
17.
Speltino
,
C.
,
Domenico
,
D. D.
,
Fiengo
,
G.
, and
Stefanopoulou
,
A. G.
,
2009
, “
Experimental Identification and Validation of an Electrochemical Model of a Lithium-Ion Battery
,”
Proceedings of the American Control Conference 2009
,
St. Louis, MO
.
18.
Haran
,
B. S.
,
Popov
,
B. N.
, and
White
,
R. E.
,
1998
, “
Determination of the Hydrogen Diffusion Coefficient in Metal Hydrides by Impedance Spectroscopy
,”
J. Power Sources
,
75
(
1
), pp.
56
63
.10.1016/S0378-7753(98)00092-5
19.
Ning
,
G.
, and
Popov
,
B. N.
,
2004
, “
Cycle Life Modeling of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1584
A1591
.10.1149/1.1787631
20.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.10.1016/j.jpowsour.2005.05.070
21.
Chaturvedi
,
N.
,
Klein
,
R.
,
Christensen
,
J.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2010
, “
Algorithms for Advanced Battery-Management Systems: Modeling, Estimation, and Control Challenges for Lithium-Ion Batteries
,”
IEEE Control Syst. Mag.
,
30
(3), pp.
40
68
.10.1109/MCS.2010.936293
22.
Marcicki
,
J.
,
Canova
,
M.
,
Conlisk
,
A. T.
, and
Rizzoni
,
G.
,
2013
, “
Design and Parameterization Analysis of a Reduced-Order Electrochemical Model of Graphite/LiFePO4 Cells for SOC/SOH Estimation
,”
J. Power Sources
,
237
, pp.
310
324
.10.1016/j.jpowsour.2012.12.120
23.
Gomadam
,
P. M.
,
Weidner
,
J. W.
,
Dougal
,
R. A.
, and
White
,
R. E.
,
2002
, “
Mathematical Modeling of Lithium-Ion and Nickel Battery Systems
,”
J. Power Sources
,
110
, pp.
267
284
.10.1016/S0378-7753(02)00190-8
24.
Forman
,
J. C.
,
Bashash
,
S.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2011
, “
Reduction of an Electrochemistry-Based Li-Ion Battery Model Via Quasi-Linearization and Padé Approximation
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A93
A101
.10.1149/1.3519059
25.
Jacobsen
,
T.
, and
West
,
G.
,
1995
, “
Diffusion Impedance in Planar, Cylindrical, and Spherical Geometry
,”
Electrochim. Acta
,
40
(
2
), pp.
255
262
.10.1016/0013-4686(94)E0192-3
26.
Shi
,
Y.
,
Prasad
,
G.
,
Shen
,
Z.
, and
Rahn
,
C. D.
,
2011
, “
Discretization Methods for Battery Systems Modeling
,”
Proceedings of the American Control Conference 2011
,
San Francisco, CA
.
You do not currently have access to this content.