A novel pneumatic valve was constructed to improve the response of air-actuated brakes for heavy vehicles to demand pressures generated during electronically controlled braking by an order of magnitude. Investigations were made into the interactions between the magnetic, mechanical, and electrical subsystems of the valve with a view toward informing design optimization. The valve was modeled using a magnetic circuit approach. The quasi-static model included the influences of the permanent magnet, field-line fringing, saturation, and the coil. Mechanical forces outputted by the model matched physical measurements with an error smaller than 10%, and magnetic fluxes throughout the circuit were generally within 20% of those found from experiments based on Faraday's law of induction, Gaussmeter measurements, and FEA simulations. A magneto-mechanical simulation of the valve switching states was created using mechanical and electrical equations, and curve-fits to the outputs of the magnetic circuit model. The simulation produced time histories of the valve's armature position that matched experimental measurements and adequately predicted working pressures. The final model required an approximation to the influence of the coil based on experimental results. Consequently, further research is recommended into the influence of solenoid coils on fringing in magnetic circuits.

References

1.
RAM Business Information
,
2007
,
Delivering the Economy
,
The Independent, London
.
2.
Dunn
,
A.
, and
Hoover
,
R.
,
2004
,
Class 8 Truck Tractor Braking Performance Improvement Study, Report 1, Straight Line Stopping Performance on a High Coefficient of Friction Surface
,
Transportation Research Center Inc./National Highway Traffic Safety Administration
,
East Liberty, OH
.
3.
National Highway Traffic Safety Administration
,
2007
,
Traffic Safety Facts
, US Department of Transportation,
Washington, DC
.
4.
Jermakian
,
J. S.
,
2010
,
Crash Avoidance Potential of Four Large Truck Technologies
,
Insurance Institute for Highway Safety
,
Arlington, VA
.
5.
Kienhofer
,
F. W.
, and
Cebon
,
D.
,
2004
, “
An Investigation of ABS Strategies for Articulated Vehicles
,”
Proc. of the 8th International Symposium on Heavy Vehicle Weights and Dimensions
, Misty Hills Conference Centre, Gauteng, South Africa, pp.
1
15
.
6.
Bendix Heavy Vehicle Systems
,
2006
,
Air Brake Manual. Saskatchewan, Canada
,
SGI Canada Bendix Heavy Vehicle Systems Inc.
,
Saskatchewan, Canada
.
7.
Transportation Research Institute
,
2007
,
Mechanics of Heavy Duty Truck Systems Course Notes
, Course on Heavy Vehicle Systems,
University of Michigan, Ann Arbor, MI
.
8.
Werde
,
J.
, and
Decker
,
H.
,
1992
, “
Brake by Wire for Commercial Vehicles
,” SAE Trans, 922489, pp.
849
859
.
9.
Robert Bosch GmbH
,
2000
,
Bosch Automotive Handbook
, 5th ed.,
Robert Bosch GmbH
,
Stuttgart
, Germany.
10.
Fancher
,
P. S.
,
Ervin
,
R. D.
,
Winkler
,
C. B.
, and
Gillespie
,
T. D.
,
1986
,
A Factbook of the Mechanical Properties of the Components for Single-Unit and Articulated Heavy Trucks
,
University of Michigan, Transportation Research Institute
,
Ann Arbor, MI
.
11.
Bu
,
F.
, and
Tan
,
H. S.
,
2007
, “
Pneumatic Brake Control for Precision Stopping of Heavy-Duty Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
15
(
1
), pp.
53
63
.10.1109/TCST.2006.883238
12.
Jiang
,
F.
, and
Gao
,
Z.
,
2001
, “
An Application of Nonlinear PID Control to a Class of Truck ABS Problems
,”
Proc. of the 40th IEEE Conference on Decision and Control (CDC)
, Orlando, FL, pp.
516
521
.
13.
Kienhofer
,
F. W.
,
Miller
,
J. I.
, and
Cebon
,
D.
,
2008
Design Concept for an Alternative Heavy Vehicle ABS System
,”
Veh. Syst. Dyn.
,
46
(
Suppl 1
), pp.
571
583
.10.1080/00423110802007761
14.
Miller
,
J. I.
,
Kienhofer
,
F. W.
, and
Cebon
,
D.
,
2008
, “
Design Concept for an Alternative Heavy Vehicle Slip Control Brake Actuator
,”
Proc. of the 10th International Symposium on Heavy Vehicle Transport Technology
, ENPC, Marne-la-Vallee, France, pp.
429
442
.
15.
Emereole
,
O. C.
,
2003
, “
Antilock Performance Comparison Between Hydraulic and Electromechanical Brake Systems
,” M.Eng.Sci Thesis, University of Melbourne, Melbourne, Australia.
16.
Hambley
,
A. R.
,
1997
,
Electrical Engineering—Principles and Applications
, 1st ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
17.
Topcu
,
E. E.
,
Yuksel
,
I.
, and
Kamis
,
Z.
,
2006
, “
Development of Electro-Pneumatic Fast Switching Valve and Investigation of its Characteristics
,”
Mechatronics
,
16
(
6
), pp.
365
378
.10.1016/j.mechatronics.2006.01.005
18.
Taghizadeh
,
M.
,
Ghaffari
,
A.
, and
Najafi
,
F.
,
2009
Modeling and Identification of a Solenoid Valve for PWM Control Applications
,”
C. R. Mec.
,
337
(
3
), pp.
131
140
.10.1016/j.crme.2009.03.009
19.
Nguyen
,
Q. H.
,
Choi
,
S. B.
,
Lee
,
Y. S.
, and
Han
,
M. S.
,
2009
, “
An Analytical Method for Optimal Design of MR Valve Structures
,”
Smart Mater. Struct.
,
18
(
9
), pp.
1
12
.10.1088/0964-1726/18/9/095032
20.
Chladny
,
R. R.
,
Koch
,
C. R.
, and
Lynch
,
A. F.
,
2005
, “
Modeling Automotive Gas-Exchange Solenoid Valve Actuators
,”
IEEE Trans. Mag.
,
41
(
3
), pp.
1155
1162
.10.1109/TMAG.2004.841701
21.
Vaughan
,
N. D.
, and
Gamble
,
J. B.
,
1996
, “
The Modeling and Simulation of a Proportional Solenoid Valve
,”
ASME J. Dyn. Syst., Meas., Control.
,
118
(
1
), pp.
120
125
.10.1115/1.2801131
22.
Meeker
,
D. C.
,
Maslen
,
E. H.
, and
Noh
,
M. D.
,
1996
, “
An Augmented Circuit Model for Magnetic Bearings Including Eddy Currents, Fringing, and Leakage
,”
IEEE Trans. Magn.
,
32
(
4
), pp.
3219
3227
.10.1109/20.508385
23.
Kajima
,
T.
,
1993
, “
Development of a High-Speed Solenoid Valve—Investigation of the Energizing Circuits
,”
IEEE Trans. Ind. Electron.
,
40
(
4
), pp.
428
435
.10.1109/41.232232
24.
Kajima
,
T.
,
1995
, “
Dynamic Model of the Plunger Type Solenoids at Deenergizing State
,”
IEEE Trans. Magn.
,
31
(
3
), pp.
2315
2323
.10.1109/20.376228
25.
Kajima
,
T.
, and
Kawamura
,
Y.
,
1995
, “
Development of a High-Speed Solenoid Valve: Investigation of Solenoids
,”
IEEE Trans. Ind. Electron.
,
42
(
1
), pp.
1
8
.10.1109/41.345838
26.
Chua
,
L. O.
, and
Stromsmoe
,
K. A.
,
1970
, “
Lumped-Circuit Models for Nonlinear Inductors Exhibiting Hysteresis Loops
,”
IEEE Trans. Circuits Theor.
,
CT-17
(
4
), pp.
564
574
.10.1109/TCT.1970.1083192
27.
Camcon Technology Ltd.
, Consulted Oct. 2010, “
Camcon—Inventors of BAT
,” http://www.camcontec.co.uk/
28.
Beer
,
F. P.
, and
Johnston
,
E. R.
,
1992
,
Mechanics of Materials
, 2nd ed., in SI Units,
McGraw-Hill
,
Berkshire, UK
.
29.
White
,
F. M.
,
1999
,
Fluid Mechanics
, 4th ed.,
WCB/McGraw Hill
,
Boston, MA
.
30.
Lindley
,
P. B.
,
1967
, “
Compression Characteristics of Laterally-Unrestrained Rubber O-rings
,”
J. Inst. Rubber Ind.
,
1
(
4
), pp.
209
213
.
31.
Kim
,
H. K.
,
Park
,
S. H.
,
Lee
,
H. G.
,
Kim
,
D. R.
, and
Lee
,
Y. H.
,
2006
, “
Approximation of Contact Stress for a Compressed and Laterally One-Sided Restrained O-ring
,”
Eng. Failure Anal.
,
14
(
8
), pp.
1680
1692
.10.1016/j.engfailanal.2006.11.061
32.
Roark
,
R. J.
, and
Young
,
W. C.
,
1975
,
Formulas for Stress and Strain
, 5th Ed.,
McGraw-Hill
,
New York
.
33.
Miller
,
J. I.
,
2010
, “
Advanced Braking Systems for Heavy Vehicles
,” Ph.D. thesis in Engineering, University of Cambridge, Cambridge, UK.
34.
Preece
,
P. F. W.
,
1970
, “
The Force of Interaction Between Permanent Magnets
,”
Phys. Edu.
,
5
(
5
), pp.
275
279
.10.1088/0031-9120/5/5/003
35.
Lovatt
,
H. C.
, and
Watterson
,
P. A.
,
1999
, “
Energy Stored in Permanent Magnets
,”
IEEE Trans. Magn.
,
35
(
1
), pp.
505
507
.10.1109/20.737473
36.
Campbell
,
P.
,
2000
, “
Comments on Energy Stored in Permanent Magnets
,”
IEEE Trans. Magn.
,
36
(
1
), pp.
401
403
.10.1109/20.822554
37.
Ashby
,
M.
,
Shercliff
,
H.
, and
Cebon
,
D.
,
2007
,
Materials—Engineering, Science, Processing, and Design
, 1st ed.,
Elsevier Ltd.
,
Oxford, UK
.
38.
Krein
,
P. T.
,
1998
,
Elements of Power Electronics
, 1st ed.,
Oxford University Press
,
Oxford, UK
.
39.
Mathworks
,
2003
, “
Matlab Version 6.5.1, Release 13, User's Guide
,” The Mathworks, Inc., Natick, MA.
40.
Schaffer
,
J. P.
,
Saxena
,
A.
,
Antolovich
,
S. D.
,
Sanders
,
T. H.
, and
Warner
,
S. B.
,
1999
,
The Science and Design of Engineering Materials
, 2nd ed.,
McGraw-Hill
,
Boston, MA
.
41.
Wang
,
S. M.
,
Miyano
,
T.
, and
Hubbard
,
M.
,
1993
, “
Electromagnetic Field Analysis and Dynamic Simulation of a Two-Valve Solenoid Actuator
,”
IEEE Trans. Magn.
,
29
(
2
), pp.
1741
1746
.10.1109/20.250742
You do not currently have access to this content.