In this paper, we consider the control of time delay system by first order controller. By Using the Hermite-Biehler theorem, which is applicable to quasipolynomials, we seek a stability region of the controller for first order delay systems.
Issue Section:
Technical Briefs
References
1.
Niculescu
, S. I.
, Delay Effects on Stability
(Springer
, London
, 2001).2.
Gu
, K.
, Kharitonov
, V.
, and Chen
, J.
, 2003, Stability of Time-Delay Systems
, Birkhauser
, Boston, MA
.3.
Gorecki
,H.
, Fuksa
, S.
, Grabowski
, P.
, 1993, and Korytowski
, A.
, 1989, Analysis and Synthesis of Time Delay Systems
, Wiley
, New York
, p. 369
.4.
Hale
, J. K.
, and Lunel
, S. M. V.
, 1993, Introduction to Functional Differential Equations
, Springer-Verlag
, New York
.5.
Richard
, J. P.
, 2003, “Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,” Automatica
, 39
, pp. 1667
–1694
.6.
Silva
, G. J.
, Datta
, A.
, and Bhattacharyya
, S. P.
, 2005, PID Controllers for Time Delay Systems
, Springer
, London
.7.
Tantaris
, R. N.
, Keel
, L. H.
, and Bhattacharyy
, S. P.
, 2002, “Stabilization of Continuous Time System by First Order Controller
,” Proceedings of the 10th Mediterranean Conference on Control and Automation—MED2002
, Lisbon, Portugal
, July 9–12.8.
Tantaris
, R. N.
, Keel
, L. H.
, and Bhattacharyy
, S. P.
, 2003, “Stabilization of Discrete-Time Systems by First-Order Controllers
,” IEEE Trans. Automat. Cont.
, 48
, pp. 858
–860
.9.
Farkh
, R.
, Laabidi
, K.
, and Ksouri
, M.
, 2009, “PI Control for Second Order Delay System with Tuning Parameter Optimization
,” Int. J. Electr. Electron. Eng.
, 3
, pp. 1
–7
.10.
Farkh
, R.
, Laabidi
, K.
, and Ksouri
, M.
, 2009, “Computation of All Stabilizing PID Gains for Second Order Delay System
,” Math. Probl. Eng.
, 2009
, pp. 1
–17
.11.
Farkh
, R.
, Laabidi
, K.
, and Ksouri
, M.
, 2009, “Robust Stabilization for Uncertain Second Order Time-Lag System
,” Mediterr. J. Meas. Control
, 5
(4
), pp. 138
–145
.12.
Farkh
, R.
, Laabidi
, K.
, and Ksouri
, M.
, 2011, “Robust PI/PID Controller for Interval First Order System With Time Delay
,” Int. J. Model. Identif. Control
, 13
(1/2), pp. 67
–77
.13.
Keunsik
, K. Y
, and Chol
, K.
, 2006, “The Entire Set of First Order Controllers Guaranteed Stability and Gain/Phase Margins for a LTI Plant with Time Delay
,” SICE-ICASE International Joint Conference 2006
, Bexco, Busan, Korea
, October 18–21.14.
Tantaris
, R. N.
, Keel
, L. H.
, and Bhattacharyy
, S. P.
, 2003, “Gain/Phase Margin Design with First order Controllers
,” Proceedings of the American Control Conference
, Denver, Colorado
, Vol. 5
, pp. 3937
–3942
.15.
Tantaris
, R. N.
, Keel
, L. H.
, and Bhattacharyya
, S. P.
, 2003, “H∞ design with first order controllers
,” Proceedings of the 2003 IEEE Conference on Decision and Control
, Maui, HI
, December 9–12.16.
Keel
, L. H.
, and Bhattacharyy
, S. P.
, 2005, “Direct Synthesis of First Order Controllers from Frequency Response Measurements
,” American Control Conference
, Portland, OR
, June 8–10.17.
Saadaoui
, K.
, Elmadssia
, S.
, and Benrejeb
, M.
, 2008, “Stabilizing First-Order Controllers for n-th Order All Pole Plants with Time Delay
,” 16th Mediterranean Conference on Control and Automation Congress Centre
, Ajaccio, France
, June 25–27.18.
Tan
, N.
, 2003, “Computation of Stabilizing Lag/Lead Controller Parameters
,” Comput. Electr. Eng.
, 29
, pp. 835
–849
.19.
Bhattacharyya
, S. P.
, Chapellat
, H.
, Keel
, L. H.
, 1995, Robust Control: The Parametric Approach
, Prentice-Hall
, Upper Saddle River, NJ
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.