This paper presents a new control scheme for the hysteresis compensation and precise positioning of a piezoelectrically actuated micromanipulator. The scheme employs an inverse Dahl model-based feedforward in combination with a repetitive proportional-integral-derivative feedback control algorithm along with an antiwindup strategy. The dynamic model of the system with Dahl hysteresis is established and identified through particle swarm optimization approach. The necessity of using global optimization and how to choose the model parameters to be optimized are addressed as well. The effectiveness of the proposed controller is demonstrated by several experimental studies on an XY parallel micromanipulator. Experimental results reveal that both antiwindup and repetitive control strategies can improve the positioning accuracy of the system, and a well performance of the proposed scheme for both one-dimensional tracking and two-dimensional contouring tasks of the micromanipulator is achieved. Moreover, due to a simple structure, the proposed methodology can be easily generalized to other micro- or nanomanipulators with piezoelectric actuation as well.

1.
Ge
,
P.
, and
Jouaneh
,
M.
, 1995, “
Modeling Hysteresis in Piezoceramic Actuators
,”
Precis. Eng.
0141-6359,
17
(
3
), pp.
211
221
.
2.
Weibel
,
F.
,
Michellod
,
Y.
,
Mullhaupt
,
P.
, and
Gillet
,
D.
, 2008, “
Real-Time Compensation of Hysteresis in a Piezoelectric-Stack Actuator Tracking a Stochastic Reference
,”
Proceedings of the American Control Conference
, pp.
2939
2944
.
3.
Goldfarb
,
M.
, and
Celanovic
,
N.
, 1997, “
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
17
(
3
), pp.
69
79
.
4.
Stepanenko
,
Y.
, and
Su
,
C. -Y.
, 1998, “
Intelligent Control of Piezoelectric Actuators
,”
Proceedings of the International Conference on Decision and Control
, pp.
4234
4239
.
5.
Kuhnen
,
K.
, 2003, “
Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl–Ishlinskii Approach
,”
Eur. J. Control
0947-3580,
9
(
4
), pp.
407
418
.
6.
Ha
,
J. -L.
,
Kung
,
Y. -S.
,
Fung
,
R. -F.
, and
Hsien
,
S. -C.
, 2006, “
A Comparison of Fitness Functions for the Identification of a Piezoelectric Hysteretic Actuator Based on the Real-Coded Genetic Algorithm
,”
Sens. Actuators, A
0924-4247,
132
(
2
), pp.
643
650
.
7.
Janocha
,
H.
, and
Kuhnen
,
K.
, 2000, “
Real-Time Compensation of Hysteresis and Creep in Piezoelectric Actuators
,”
Sens. Actuators, A
0924-4247,
79
(
2
), pp.
83
89
.
8.
Ru
,
C.
, and
Sun
,
L.
, 2005, “
Hysteresis and Creep Compensation for Piezoelectric Actuator in Open-Loop Operation
,”
Sens. Actuators, A
0924-4247,
122
(
1
), pp.
124
130
.
9.
Song
,
G.
,
Zhao
,
J.
,
Zhou
,
X.
, and
De Abreu-Garcia
,
J.
, 2005, “
Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
(
2
), pp.
198
209
.
10.
Bashash
,
S.
, and
Jalili
,
N.
, 2007, “
Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
867
878
.
11.
Shen
,
J. -C.
,
Jywe
,
W. -Y.
,
Chiang
,
H. -K.
, and
Shu
,
Y. -L.
, 2008, “
Precision Tracking Control of a Piezoelectric-Actuated System
,”
Precis. Eng.
0141-6359,
32
(
2
), pp.
71
78
.
12.
Lin
,
C. -J.
, and
Yang
,
S. -R.
, 2006, “
Precise Positioning of Piezo-Actuated Stages Using Hysteresis-Observer Based Control
,”
Mechatronics
0957-4158,
16
(
7
), pp.
417
426
.
13.
Aphale
,
S. S.
,
Devasia
,
S.
, and
Moheimani
,
S. O. R.
, 2008, “
High-Bandwidth Control of a Piezoelectric Nanopositioning Stage in the Presence of Plant Uncertainties
,”
Nanotechnology
0957-4484,
19
, p.
125503
.
14.
Sebastian
,
A.
, and
Salapaka
,
S. M.
, 2005, “
Design Methodologies for Robust Nano-Positioning
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
6
), pp.
868
876
.
15.
Dong
,
J.
,
Salapaka
,
S. M.
, and
Ferreira
,
P. M.
, 2008, “
Robust Control of a Parallel-Kinematic Nanopositioner
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
4
), p.
041007
.
16.
Seo
,
T. W.
,
Kim
,
H. S.
,
Kang
,
D. S.
, and
Kim
,
J.
, 2008, “
Gain-Scheduled Robust Control of a Novel 3-DOF Micro Parallel Positioning Platform via a Dual Stage Servo System
,”
Mechatronics
0957-4158,
18
(
9
), pp.
495
505
.
17.
Liaw
,
H. C.
,
Shirinzadeh
,
B.
, and
Smith
,
J.
, 2008, “
Robust Motion Tracking Control of Piezo-Driven Flexure-Based Four-Bar Mechanism for Micro/Nano Manipulation
,”
Mechatronics
0957-4158,
18
(
2
), pp.
111
120
.
18.
Lin
,
F. -J.
,
Shieh
,
H. -J.
,
Huang
,
P. -K.
, and
Teng
,
L. -T.
, 2006, “
Adaptive Control With Hysteresis Estimation and Compensation Using RFNN for Piezo-Actuator
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
53
(
9
), pp.
1649
1661
.
19.
Shakir
,
H.
, and
Kim
,
W. -J.
, 2007, “
Multiscale Control for Nanoprecision Positioning Systems With Large Throughput
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
945
951
.
20.
Li
,
Y.
, and
Xu
,
Q.
, 2010, “
Development and Assessment of a Novel Decoupled XY Parallel Micropositioning Platform
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
15
(
1
), pp.
125
135
.
21.
Helmick
,
D.
, and
Messner
,
W.
, 2003, “
Higher Order Modeling of Hysteresis in Disk Drive Actuators
,”
Proceedings of the 42th IEEE Conference on Decision and Control
, pp.
3712
3716
.
22.
Sun
,
X.
, and
Chang
,
T.
, 2001, “
Control of Hysteresis in a Monolithic Nanoactuator
,”
Proceedings of the American Control Conference
, pp.
2261
2266
.
23.
Cahyadi
,
A.
, and
Yamamoto
,
Y.
, 2006, “
Hysteretic Modelling of Piezoelectric Actuator Attached on Flexure Hinge Mechanism
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
5437
5440
.
24.
Cahyadi
,
A. I.
, and
Yamamoto
,
Y.
, 2006, “
Modelling a Micro Manipulation System With Flexure Hinge
,”
Proceedings of the IEEE International Conference on Robotics, Automation and Mechatronics
, pp.
1
5
.
25.
Li
,
Y.
, and
Xu
,
Q.
, 2009, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Robot.
1552-3098,
25
(
3
), pp.
645
657
.
26.
Zhu
,
Y.
, 2001,
Multivariable System Identification for Process Control
,
Elsevier
,
New York
.
27.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
Proceedings of the International Conference on Neural Networks
, pp.
1942
1948
.
28.
Clerc
,
M.
, and
Kennedy
,
J.
, 2002, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
1
), pp.
58
73
.
29.
Xu
,
Q.
, and
Li
,
Y.
, 2009, “
Error Analysis and Optimal Design of a Class of Translational Parallel Kinematic Machine Using Particle Swarm Optimization
,”
Robotica
0263-5747,
27
(
1
), pp.
67
78
.
30.
Fung
,
R. -F.
,
Hsu
,
Y. -L.
, and
Huang
,
M. -S.
, 2009, “
System Identification of a Dual-Stage XY Precision Positioning Table
,”
Precis. Eng.
0141-6359,
33
(
1
), pp.
71
80
.
31.
Li
,
Y.
, and
Xu
,
Q.
, “
Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator
,”
IEEE Trans. Control Syst. Technol.
1063-6536, in press.
32.
Astrom
,
K. J.
, and
Hagglund
,
T.
, 1995,
PID Controllers: Theory, Design, and Tuning
, 2nd ed.,
ISA
,
Research Triangle Park, NC
.
33.
Inoue
,
T.
,
Nakano
,
M.
, and
Iwai
,
S.
, 1981, “
High Accuracy Control of Servomechanism for Repeated Contouring
,”
Proceedings of the Tenth Annual Symposium on Incremental Motion Control System and Devices
, pp.
258
292
.
34.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
, 1988, “
Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
7
), pp.
659
668
.
35.
Tomizuka
,
M.
,
Tsao
,
T. -C.
, and
Chew
,
K. -K.
, 1989, “
Analysis and Synthesis of Discrete-Time Repetitive Controllers
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
111
(
3
), pp.
353
358
.
36.
Choi
,
G. S.
,
Lim
,
Y. A.
, and
Choi
,
G. H.
, 2002, “
Tracking Position Control of Piezoelectric Actuators for Periodic Reference Inputs
,”
Mechatronics
0957-4158,
12
(
5
), pp.
669
684
.
37.
Zhou
,
K.
, and
Wang
,
D.
, 2003, “
Digital Repetitive Controlled Three-Phase PWM Rectifier
,”
IEEE Trans. Power Electron.
0885-8993,
18
(
1
), pp.
309
316
.
38.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
, 2006, “
A Survey of Iterative Learning Control: A Learning-Based Method for High-Performance Tracking Control
,”
IEEE Control Syst. Mag.
0272-1708,
26
(
3
), pp.
96
114
.
39.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
, 2005,
Digital Control of Dynamic Systems
, 3rd ed.,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.