While the atomic force microscope (AFM) was mainly developed to image the topography of a sample, it has been discovered as a powerful tool also for nanomanipulation applications within the last decade. A variety of different manipulation types exists, ranging from dip-pen and mechanical lithography to assembly of nano-objects such as carbon nanotubes (CNTs), deoxyribonucleic acid (DNA) strains, or nanospheres. The latter, the assembly of nano-objects, is a very promising technique for prototyping nanoelectronical devices that are composed of DNA-based nanowires, CNTs, etc. But, pushing nano-objects in the order of a few nanometers nowadays remains a very challenging, labor-intensive task that requires frequent human intervention. To increase throughput of AFM-based nanomanipulation, automation can be considered as a long-term goal. However, automation is impeded by spatial uncertainties existing in every AFM system. This article focuses on thermal drift, which is a crucial error source for automating AFM-based nanoassembly, since it implies a varying, spatial displacement between AFM probe and sample. A novel, versatile drift estimation method based on Monte Carlo localization is presented and experimental results obtained on different AFM systems illustrate that the developed algorithm is able to estimate thermal drift inside an AFM reliably even with highly unstructured samples and inside inhomogeneous environments.

1.
Schaefer
,
D. M.
,
Reifenberger
,
R.
,
Patil
,
A.
, and
Andres
,
R. P.
, 1995, “
Fabrication of Two-Dimensional Arrays of Nanometer-Size Clusters With The Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
66
(
8
), pp.
1012
1014
.
2.
Dellagiovanna
,
M.
,
Yoshioka
,
H.
,
Miyashita
,
H.
,
Murai
,
S.
,
Nakaue
,
T.
,
Takaoka
,
O.
,
Uemoto
,
A.
,
Kikuchi
,
S.
,
Hagiwara
,
R.
, and
Benard
,
S.
, 2007, “
A Semi-Automated AFM Photomask Repair Process for Manufacturing Application Using SPR6300
,”
Proc. SPIE
0277-786X,
6730
, p.
673020
.
3.
Nelson
,
B. A.
,
King
,
W. P.
,
Laracuente
,
A. R.
,
Sheehan
,
P. E.
, and
Whitman
,
L. J.
, 2006, “
Direct Deposition of Continuous Metal Nanostructures by Thermal Dip-Pen Nanolithography
,”
Appl. Phys. Lett.
0003-6951,
88
(3), p.
033104
.
4.
Rubio-Sierra
,
F. J.
,
Heckl
,
W. M.
, and
Stark
,
R. W.
, 2005, “
Nanomanipulation by Atomic Force Microscopy
,”
Adv. Eng. Mater.
1438-1656,
7
(
4
), pp.
193
196
.
5.
Fearing
,
R. S.
, 1995, “
Survey of Sticking Effects for Micro Parts Handling
,”
IROS ’95: Proceedings of the International Conference on Intelligent Robots and Systems
,
IEEE Computer Society
, Vol.
2
, pp.
212
217
.
6.
Sitti
,
M.
, 2007, “
Microscale and Nanoscale Robotics Systems
,”
IEEE Rob. Autom. Mag.
1070-9932,
14
(
1
), pp.
53
60
.
7.
Chen
,
H.
,
Xi
,
N.
, and
Li
,
G.
, 2006, “
CAD-Guided Automated Nanoassembly Using Atomic Force Microscopy-Based Nonrobotics
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
3
, pp.
208
217
.
8.
Mokaberi
,
B.
,
Yun
,
J.
,
Wang
,
M.
, and
Requicha
,
A. A. G.
, 2007, “
Automated Nanomanipulation With Atomic Force Microscopes
,”
Proceedings on IEEE International Conference on Robotics & Automation (ICRA ’07)
.
9.
Mokaberi
,
B.
, and
Requicha
,
A. A. G.
, 2008, “
Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
5
(
2
), pp.
197
206
.
10.
Mokaberi
,
B.
, and
Requicha
,
A. A. G.
, 2006, “
Drift Compensation for Automatic Nanomanipulation With Scanning Probe Microscopes
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
3
(
3
), pp.
199
207
.
11.
Schitter
,
G.
,
Allgöwer
,
F.
, and
Stemmer
,
A.
, 2004, “
A New Control Strategy for High-Speed Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
15
(
1
), pp.
108
114
.
12.
Li
,
Y.
, and
Bechhoefer
,
J.
, 2007, “
Feedforward Control of a Closed-Loop Piezoelectric Translation Stage for Atomic Force Microscope
,”
Rev. Sci. Instrum.
0034-6748,
78
(
1
), pp.
013702
.
13.
Tranvouez
,
E.
,
Boer-Duchemin
,
E.
,
Comtet
,
G.
, and
Dujardin
,
G.
, 2007, “
Active Drift Compensation Applied to Nanorod Manipulation With an Atomic Force Microscope
,”
Rev. Sci. Instrum.
0034-6748,
78
, pp.
115103
.
14.
Fox
,
D.
,
Burgard
,
W.
,
Dellaert
,
F.
, and
Thrun
,
S.
, 1999, “
Monte Carlo Localization: Efficient Position Estimation for Mobile Robots
,”
Proceedings of the 16th National Conference on Artificial Intelligence (AAAI’99)
.
15.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
, 2005,
Probabilistic Robotics
,
MIT
,
Cambridge, MA
.
16.
Horcas
,
I.
,
Fernández
,
R.
,
Gómez-Rodríguez
,
J. M.
,
Colchero
,
J.
,
Gómez-Herrero
,
J.
, and
Baro
,
A. M.
, 2007, “
WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology
,”
Rev. Sci. Instrum.
0034-6748,
78
(
1
), pp.
013705
.
17.
Baur
,
C.
,
Gazen
,
B. C.
,
Koel
,
B.
,
Ramachandran
,
T. R.
,
Requicha
,
A. A. G.
, and
Zini
,
L.
, 1997, “
Robotic Nanomanipulation With a Scanning Probe Microscope in a Networked Computing Environment
,”
J. Vac. Sci. Technol. B
1071-1023,
15
(
4
), pp.
1577
1580
.
18.
Lapshin
,
R. V.
, 2007, “
Automatic Drift Elimination in Probe Microscope Images Based on Techniques of Counter-Scanning and Topography Feature Recognition
,”
Meas. Sci. Technol.
0957-0233,
18
(
3
), pp.
907
927
.
You do not currently have access to this content.