New developments in MEMS (microelectromechanical systems) fabrication allowed the development of new types of atomic force microscopy (AFM) sensor with integrated readout circuit and actuator built in on the cantilever. Such a fully instrumented cantilever allows a much more direct measurement and actuation of the cantilever motion and interaction with the sample. This technology is expected to not only allow for high speed imaging but also the miniaturization of AFMs. Based on the complexity of these integrated MEMS devices, a thorough understanding of their behavior and a specialized controls approach is needed to make the most use out of this new technology. In this paper we investigate the intrinsic properties of such MEMS cantilevers and develop a combined approach for sensing and control, optimized for high speed detection and actuation. Further developments based on the results presented in this paper will help to expand the use of atomic force microscopy to a broad range of everyday applications in industrial process control and clinical diagnostics.

1.
Akamine
,
S.
,
Barrett
,
R. C.
, and
Quate
,
C. F.
, 1990, “
Improved Atomic Force Microscope Images Using Microcantilevers With Sharp Tips
,”
Appl. Phys. Lett.
0003-6951,
57
(
3
), pp.
316
318
.
2.
Albrecht
,
T. R.
,
Akamine
,
S.
,
Carver
,
T. E.
, and
Quate
,
C. F.
, 1990, “
Microfabrication of Cantilever Styli for the Atomic Force Microscope
,”
J. Vac. Sci. Technol. A
0734-2101,
8
(
4
), pp.
3386
3396
.
3.
Marti
,
O.
,
Drake
,
B.
, and
Hansma
,
P. K.
, 1987, “
Atomic Force Microscopy of Liquid-Covered Surfaces—Atomic Resolution Images
,”
Appl. Phys. Lett.
0003-6951,
51
(
7
), pp.
484
486
.
4.
Fritz
,
M.
,
Radmacher
,
M.
,
Cleveland
,
J. P.
,
Allersma
,
M. W.
,
Stewart
,
R. J.
,
Gieselmann
,
R.
,
Janmey
,
P.
,
Schmidt
,
C. F.
, and
Hansma
,
P. K.
, 1995, “
Imaging Globular and Filamentous Proteins in Physiological Buffer Solutions With Tapping Mode Atomic-Force Microscopy
,”
Langmuir
0743-7463,
11
(
9
), pp.
3529
3535
.
5.
Martin
,
Y.
,
Abraham
,
D. W.
, and
Wickramasinghe
,
H. K.
, 1988, “
High-Resolution Capacitance Measurement and Potentiometry by Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
52
(
13
), pp.
1103
1105
.
6.
Vanderwerf
,
K. O.
,
Putman
,
C. A. J.
,
Degrooth
,
B. G.
, and
Greve
,
J.
, 1994, “
Adhesion Force Imaging in Air and Liquid by Adhesion Mode Atomic-Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
65
(
9
), pp.
1195
1197
.
7.
Imer
,
R.
,
Akiyama
,
T.
,
De Rooji
,
N. F.
,
Stolz
,
M.
,
Aebi
,
U.
,
Friederich
,
N. F.
,
Koenig
,
U.
,
Wirz
,
D.
,
Daniels
,
A. U.
, and
Staufer
,
U.
, 2006, “
Development of Atomic Force Microscope for Arthroscopic Knee Cartilage Inspection
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
45
(
3B
), pp.
2319
2323
.
8.
Ruf
,
A.
,
Abraham
,
M.
,
Diebel
,
J.
,
Ehrfeld
,
W.
,
Guthner
,
P.
,
Lacher
,
M.
,
Mayr
,
K.
, and
Reinhardt
,
J.
, 1997, “
Integrated Fabry-Perot Distance Control for Atomic Force Microscopy
,”
J. Vac. Sci. Technol. B
1071-1023,
15
(
3
), pp.
579
585
.
9.
Brugger
,
J.
,
Blanc
,
N.
,
Renaud
,
P.
, and
Derooji
,
N. F.
, 1994, “
Microlever With Combined Integrated Sensor Actuator Functions for Scanning Force Microscopy
,”
Sens. Actuators, A
0924-4247,
43
(
1–3
), pp.
339
345
.
10.
Lee
,
J.
,
Beechem
,
T.
,
Wright
,
T. L.
,
Nelson
,
B. A.
,
Graham
,
S.
, and
King
,
W. P.
, 2006, “
Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters
,”
J. Microelectromech. Syst.
1057-7157,
15
(
6
), pp.
1644
1655
.
11.
Lee
,
J.
, and
King
,
W. P.
, 2008, “
Improved All-Silicon Microcantilever Heaters With Integrated Piezoresistive Sensing
,”
J. Microelectromech. Syst.
1057-7157,
17
(
2
), pp.
432
445
.
12.
Lee
,
J.
, and
King
,
W. P.
, 2008, “
Liquid Operation of Silicon Microcantilever Heaters
,”
IEEE Sens. J.
1530-437X,
8
(
11
), pp.
1805
1806
.
13.
Minne
,
S. C.
,
Manalis
,
S. R.
, and
Quate
,
C. F.
, 1995, “
Parallel Atomic Force Microscopy Using Cantilevers With Integrated Piezoresistive Sensors and Integrated Piezoelectric Actuators
,”
Appl. Phys. Lett.
0003-6951,
67
(
26
), pp.
3918
3920
.
14.
Manalis
,
S. R.
,
Minne
,
S. C.
, and
Quate
,
C. F.
, 1996, “
Atomic Force Microscopy for High Speed Imaging Using Cantilevers With an Integrated Actuator and Sensor
,”
Appl. Phys. Lett.
0003-6951,
68
(
6
), pp.
871
873
.
15.
Ivanov
,
T.
,
Gotszalk
,
T.
,
Grabiec
,
P.
,
Tomerov
,
E.
, and
Rangelow
,
I.
, 2003, “
Thermally Driven Micromechanical Beam With Piezoresistive Deflection Readout
,”
Microelectron. Eng.
0167-9317,
67–68
, pp.
550
556
.
16.
Ivanov
,
T.
,
Gotszalk
,
T.
,
Sulzbach
,
T.
,
Chakarov
,
I.
, and
Rangelow
,
I.
, 2003, “
AFM Cantilever With Ultrathin Transistor-Channel Piezoresistor: Quantum Confinement
,”
Microelectron. Eng.
0167-9317,
67–68
, pp.
534
541
.
17.
Linnemann
,
R.
,
Gotszalk
,
T.
,
Hadjiiski
,
L.
, and
Rangelow
,
I. W.
, 1995, “
Characterization of a Cantilever With an Integrated Deflection Sensor
,”
Thin Solid Films
0040-6090,
264
(
2
), pp.
159
164
.
18.
Hillier
,
A. C.
, and
Bard
,
A. J.
, 1997, “
AC-Mode Atomic Force Microscope Imaging in Air and Solutions With a Thermally Driven Bimetallic Cantilever Probe
,”
Rev. Sci. Instrum.
0034-6748,
68
(
5
), pp.
2082
2090
.
19.
Marti
,
O.
,
Ruf
,
A.
,
Hipp
,
M.
,
Bielefeldt
,
H.
,
Colchero
,
J.
, and
Mlynek
,
J.
, 1992, “
Mechanical and Thermal Effects of Laser Irradiation on Force Microscope Cantilevers
,”
Ultramicroscopy
0304-3991,
42–44
, pp.
345
350
.
20.
Malo
,
J.
, and
Izpura
,
J. I.
, 2007, “
Simultaneous Magnetic and Electrostatic Driving of Microcantilevers
,”
Sens. Actuators, A
0924-4247,
136
(
1
), pp.
347
357
.
21.
Schitter
,
G.
,
Stark
,
R. W.
, and
Stemmer
,
A.
, 2004, “
Fast Contact-Mode Atomic Force Microscopy on Biological Specimen by Model-Based Control
,”
Ultramicroscopy
0304-3991,
100
(
3–4
), pp.
253
257
.
22.
Butt
,
H. J.
,
Siedle
,
P.
,
Seifert
,
K.
,
Fendler
,
K.
,
Seeger
,
T.
,
Bamberg
,
E.
,
Weisenhorn
,
A. L.
,
Goldie
,
K.
, and
Engel
,
A.
, 1993, “
Scan Speed Limit in Atomic Force Microscopy
,”
J. Microsc.-Oxford
0022-2720,
169
, pp.
75
84
.
23.
Fantner
,
G. E.
,
Schitter
,
G.
,
Kindt
,
J. H.
,
Ivanov
,
T.
,
Ivanova
,
K.
,
Patel
,
R.
,
Holten-Andersen
,
N.
,
Adams
,
J.
,
Thurner
,
P. J.
,
Rangelow
,
I. W.
, and
Hansma
,
P. K.
, 2006, “
Components for High Speed Atomic Force Microscopy
,”
Ultramicroscopy
0304-3991,
106
(
8–9
), pp.
881
887
.
24.
Ando
,
T.
,
Kodera
,
N.
,
Takai
,
E.
,
Maruyama
,
D.
,
Saito
,
K.
, and
Toda
,
A.
, 2001, “
A High-Speed Atomic Force Microscope for Studying Biological Macromolecules
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
22
), pp.
12468
12472
.
25.
Kindt
,
J. H.
,
Fantner
,
G. E.
,
Cutroni
,
J. A.
, and
Hansma
,
P. K.
, 2004, “
Rigid Design of Fast Scanning Probe Microscopes Using Finite Element Analysis
,”
Ultramicroscopy
0304-3991,
100
(
3–4
), pp.
259
265
.
26.
Pedrak
,
R.
,
Ivanov
,
T.
,
Ivanova
,
K.
,
Gotszalk
,
T.
,
Abedinov
,
N.
,
Rangelow
,
I.
,
Edinger
,
K.
,
Tomerov
,
E.
,
Schenkel
,
T.
, and
Hudek
,
P.
, 2003, “
Micromachined Atomic Force Microscopy Sensor With Integrated Piezoresistive, Sensor and Thermal Bimorph Actuator for High-Speed Tapping-Mode Atomic Force Microscopy Phase-Imaging in Higher Eigenmodes
,”
J. Vac. Sci. Technol. B
1071-1023,
21
(
6
), pp.
3102
3107
.
27.
Lee
,
J.
, and
King
,
W. P.
, 2007, “
Microcantilever Actuation Via Periodic Internal Heating
,”
Rev. Sci. Instrum.
0034-6748,
78
(
12
), p.
126102
.
28.
Ferrari
,
V.
,
Ghisla
,
A.
,
Marioli
,
D.
, and
Taroni
,
A.
, 2005, “
Silicon Resonant Accelerometer With Electronic Compensation of Input-Output Cross-Talk
,”
Sens. Actuators, A
0924-4247,
123-124
, pp.
258
266
.
29.
Corman
,
T.
,
Noren
,
K.
,
Enoksson
,
P.
,
Melin
,
J.
, and
Stemme
,
G.
, 2000, “
“Burst” Technology With Feedback-Loop Control Forcapacitive Detection and Electrostatic Excitation
,”
Electron Devices
,
47
, pp.
2228
2235
. 0002-7820
30.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
31.
Rissanen
,
J.
, 1986, “
Stochastic Complexity and Modeling
,”
Ann. Stat.
0090-5364,
14
, pp.
1080
1100
.
32.
Kobayashi
,
M.
, and
Horowitz
,
R.
, 2001, “
Track Seek Control for Hard Disk Dual-Stage Servo Systems
,”
IEEE Trans. Magn.
0018-9464,
37
(
2
), pp.
949
954
.
33.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S.
, 2007, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
802
823
.
34.
Kokavecz
,
J.
,
Marti
,
O.
,
Heszler
,
P.
, and
Mechler
,
A.
, 2006, “
Imaging Bandwidth of the Tapping Mode Atomic Force Microscope Probe
,”
Phys. Rev. B
0163-1829,
73
(
15
), p.
155403
.
35.
Zou
,
Q.
,
Leang
,
K.
,
Sadoun
,
E.
,
Reed
,
M.
, and
Devasia
,
S.
, 2004, “Control Issues in High-Speed AFM for Biological Applications: Collagen Imaging Example,” Asian J. Control, 6(2), pp. 164–178.
You do not currently have access to this content.