A novel active vibration control technique based on positive position feedback method is developed. This method, which is a modified version of positive position feedback, employs a first-order compensator that provides damping control and a second-order compensator for vibration suppression. In contrast, conventional positive position feedback uses a single second-order compensator. The technique is useful for strain-based sensors and can be applied to piezoelectrically controlled systems. After introducing the concept of modified positive position feedback, this paper investigates the stability of the new method for locating gain limits. Stability conditions are global and independent of the dynamical characteristics of the open-loop system. Using root locus plots, proper compensator frequency is identified and damping of the closed-loop system is studied. The performance of the modified positive position feedback for both steady-state and transient dynamic control is studied. The experimental and numerical results show that the proposed method is significantly more effective in controlling steady-state response and slightly advantageous for transient dynamics control, as compared with conventional positive position feedback.

1.
Humphris
,
A. D. L.
,
Miles
,
M. J.
, and
Hobbs
,
J. K.
, 2005, “
A Mechanical Microscope: High-Speed Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
034106
.
2.
Mahmoodi
,
S. N.
,
Jalili
,
N.
, and
Daqaq
,
M. F.
, 2008, “
Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically-Actuated Microcantilever Sensor
,”
IEEE/ASME Trans. Mechatron.
,
13
, pp.
58
65
. 1083-4435
3.
Jha
,
R.
, and
Rower
,
J.
, 2002, “
Experimental Investigation of Active Vibration Control Using Neural Networks and Piezoelectric Actuators
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
115
121
.
4.
Elahinia
,
M. H.
, and
Ahmadian
,
M.
, 2006, “
Application of the Extended Kalman Compensator to Control of a Shape Memory Alloy Arm
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1370
1384
.
5.
Elahinia
,
M. H.
, and
Ahmadian
,
M.
, 2005, “
An Enhanced SMA Phenomenological Model: I. The Shortcomings of the Existing Models
,”
Mater. Struct.
,
14
, pp.
1297
1308
. 1359-5997
6.
Hu
,
Q.
, and
Ma
,
G.
, 2006, “
Spacecraft Vibration Suppression Using Variable Structure Output Feedback Control and Smart Materials
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
221
230
.
7.
Preumont
,
A.
, 1997,
Vibration Control of Active Structures
,
Kluwer Academic
,
Dordrecht
.
8.
Goh
,
C. J.
, and
Caughey
,
T. K.
, 1985, “
On the Stability Problem Caused by Finite Actuator Dynamics in the Collocated Control of Large Space Structures
,”
Int. J. Control
0020-7179,
41
, pp.
787
802
.
9.
Dosch
,
J.
,
Leo
,
D.
, and
Inman
,
D.
, 1995, “
Modeling and Control for Vibration Suppression of a Flexible Active Structure
,”
J. Guid. Control Dyn.
0731-5090,
18
, pp.
340
346
.
10.
Shan
,
J.
,
Liu
,
H.
, and
Sun
,
D.
, 2005, “
Slewing and Vibration Control of a Single-Link Flexible Manipulator by Positive Position Feedback (PPF)
,”
Mechatronics
0957-4158,
15
, pp.
487
503
.
11.
Hu
,
Q.
, 2006, “
Spacecraft Vibration Reduction Using Pulse Modulated Command Input and Smart Materials
,”
Aircraft Engineering and Aerospace Technology: An International Journal
,
78
(
5
), pp.
378
386
.
12.
Kwak
,
M. K.
, and
Heo
,
S.
, 2007, “
Active Vibration Control of Smart Grid Structure by Multi-Input and Multi-Output Positive Position Feedback Controller
,”
J. Sound Vib.
,
304
, pp.
230
245
. 0022-460X
13.
Fanson
,
J. L.
, and
Caughey
,
T. K.
, 1990, “
Positive Position Feedback Control for Large Space Structures
,”
AIAA J.
0001-1452,
28
, pp.
717
724
.
14.
Baz
,
A.
, and
Hong
,
J.
, 1997, “
Adaptive Control of Flexible Structures Using Modal Positive Position Feedback
,”
Int. J. Adapt. Control Signal Process.
,
11
, pp.
231
253
. 0890-6327
15.
Malik
,
N.
,
Neild
,
S.
, and
Wagg
,
D.
, 2007, “
Vibration Control of Composite Beams Using Adaptive Positive Position Feedback
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conference & Computers
, Las Vegas, NV, September 4–7.
16.
Friswell
,
M. I.
, and
Inman
,
D. J.
, 1999, “
The Relationship Between Positive Position Feedback and Output Feedback Controllers
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
285
291
.
17.
Hu
,
Q.
,
Xie
,
L. A.
, and
Gao
,
H.
, 2007, “
Adaptive Variable Structure and Active Vibration Reduction for Flexible Spacecraft Under Input Nonlinearity
,”
J. Vib. Control
1077-5463,
13
, pp.
1573
1602
.
18.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
, 2006, “
Active Control of Structures Using Time Delayed Positive Feedback Proportional Control Designs
,”
Struct. Control Health Monit.
,
13
, pp.
536
552
. 1545-2255
19.
Hwang
,
J. K.
,
Choi
,
C.
, and
Song
,
C. K.
, 2000, “
Phase Delay Control of a Cantilever Beam
,”
J. Vib. Control
1077-5463,
6
, pp.
257
272
.
20.
Rew
,
K.
,
Han
,
J.
, and
Lee
,
I.
, 2002, “
Multi-Modal Vibration Control Using Adaptive Positive Position Feedback
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
13
, pp.
13
22
.
21.
Ahmadian
,
M.
, and
Jeric
,
K. M.
, 2001, “
On the Application of Shunted Piezoceramics for Increasing Acoustic Transmission Loss in Structures
,”
J. Sound Vib.
,
243
, pp.
347
359
. 0022-460X
22.
Franklin
,
G. F.
,
Powel
,
J. D.
, and
Emami-Naeini
,
A.
, 1986,
Feedback Control of Dynamic Systems
,
Addison-Wesley
,
Reading, MA
.
23.
Lanzon
,
A.
, and
Petersen
,
I. R.
, 2008, “
Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response
,”
IEEE Trans. Autom. Control
,
53
(
4
), pp.
1042
1046
. 0018-9286
24.
Moheimani
,
S. O. R.
,
Vautier
,
B. J. G.
, and
Bhikkaji
,
B.
, 2006, “
Experimental Implementation of Extended Multivariable PPF Control on an Active Structure
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
3
), pp.
443
445
.
You do not currently have access to this content.