A method that is often used for parameter estimation is the extended Kalman filter (EKF). EKF is a model-based strategy that implicitly considers the effect of modeling uncertainties. This implicit consideration often leads to the tuning of the filter by trial and error. When formulated for parameter estimation, the “tuned” EKF becomes sensitive to uncertainties in its internal model. The EKF’s robustness can be improved by combining it with the recently proposed variable structure filter (VSF) concept. In a combined form, the modeling uncertainties no longer affect stability, but impact the performance and the quality of the estimation process. Furthermore, the VSF concept provides a secondary set of indicators of performance that is in addition to the estimation error and that pertains to the range of parametric uncertainties. As such, the robustness of the combined method and its multiple indicators of performance allow the use of intelligent adaptation for improving the performance of the estimation process. For real-time applications, online neural network adaptation may be used to improve the performance by progressively reducing specific modeling uncertainties in the system. In this paper, a new parameter estimation method that uses concepts associated with the EKF, the VSF, and neural network adaptation is introduced. The performance of this method is considered and discussed for applications that involve parameter estimation such as fault detection.

1.
Grewal
,
M. S.
, and
Andews
,
A. P.
, 2001,
Kalman Filtering Theory and Practice
, 2nd ed.,
Wiley Interscience
,
New York
.
2.
Haykin
,
S.
, 1984,
Introduction to Adaptive Filters
,
Macmillan
,
New York
.
3.
Kailath
,
T.
, 1974, “
A Review of Three Decades of Linear Filtering Theory
,”
IEEE Trans. Inf. Theory
0018-9448,
IT-20
(
2
), pp.
146
181
.
4.
Sorenson
,
H. W.
, 1970, “
Least-Squares Estimation: From Gauss to Kalman
,”
IEEE Spectrum
0018-9235,
7
(
7
), pp.
63
68
.
5.
Julier
,
S.
,
Uhlmann
,
J.
, and
Durant-White
,
H. F.
, 2000, “
A New Method for Onolinear Transformation of Means and Covariances in Filters and Estimators
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
477
482
.
6.
Julier
,
S. J.
, 2002, “
The Scaled Unscented Transform
,”
Proceedings of the American Control Conference
, May, pp.
4555
4559
.
7.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
, 2004,
Beyond the Kalman Filter: Particle Filters for Tracking Applications
,
Artech House
,
Boston
.
8.
Doucet
,
A.
,
de Freitas
,
N.
, and
Gordon
,
N.
, 2000,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
9.
Habibi
,
S. R.
, and
Burton
,
R.
, 2003, “
The Variable Structure Filter
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
1
7
.
10.
Habibi
,
S. R.
, 2005, “
The Extended Variable Structure Filter
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
2
), pp.
341
351
.
11.
Habibi
,
S. R.
, and
Burton
,
R.
, 2007, “
Parameter Identification for a High Performance Hydrostatic Actuation System Using the Variable Structure Filter Concept
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
(
2
), pp.
229
235
.
12.
Grimble
,
M.
, 1991, “
H∞ Fixed-Lag Smoothing Filter for Scalar Systems
,”
IEEE Trans. Signal Process.
1053-587X,
39
(
9
), pp.
1955
1963
.
13.
Grimble
,
M.
, 1996, “
H∞ Optimal Multichannel Linear Deconvolution Filters, Predictors And Smoothers
,”
Int. J. Control
0020-7179,
63
, pp.
519
533
.
14.
Basar
,
T.
, 1991, “
Optimum Performance Levels for Minimax Filters, Predictors and Smoothers
,”
Syst. Control Lett.
0167-6911,
16
, pp.
309
317
.
15.
Khargonekar
,
P. P.
, and
Nagpal
,
K. M.
, 1991, “
Filtering and Smoothing in an H∞ Setting
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
151
166
.
16.
Hassibi
,
B.
,
Sayed
,
A. H.
, and
Kailath
,
T.
, 1996, “
Linear Estimation in Krein Spaces—Parts I and II: Theory and Applications
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
18
49
.
17.
Hassibi
,
B.
,
Kailath
,
T.
, and
Sayed
,
A.
, 2000, “
Array Algorithms for H Estimation
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
4
), pp.
702
706
.
18.
Zames
,
G.
, and
Francis
,
B.
, 1981, “
A New Approach to Classical Methods: Feedback and Minimax Sensitivity
,”
CDC Conference
,
San Diego, CA
.
19.
Francis
,
B.
, 1987,
A Course in H∞ Control Theory
,
Springer
,
Berlin
.
20.
Doyle
,
J.
,
Glover
,
K.
,
Khargonekar
,
P.
, and
Francis
,
B.
, 1988, “
State-Space Solutions to Standard H∞ and H∞ Control Problems
,”
Proceedings of the American Control Conference (ACC)
,
Altalnta, GA
, Vol.
2
, pp.
1691
1696
.
21.
Haykin
,
S.
, 1999,
Neural Networks
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Chinniah
,
Y.
,
Burton
,
R.
, and
Habibi
,
S. R.
, 2003, “
Parameter Estimation in a Hydrostatic System Using an Extended Kalman Filter
,”
Int. J. Fluid Power
1439-9776,
4
(
3
), pp.
27
34
.
23.
Venugopal
,
K. P.
,
Pandya
,
A. S.
, and
Sudhakar
,
R.
, 1994, “
A Recurrent Neural Network Controller and Learning Algorithm for On-Line Learning Control of Autonomous Underwater Vehicles
,”
Neural Networks
0893-6080,
7
(
5
), pp.
833
846
.
24.
Harth
,
E.
, and
Tzanakou
,
E.
, 1974, “
ALOPEX: A Sctochastic Method for Determining Visual Receptive Fields
,”
Vision Res.
0042-6989,
14
, pp.
1475
1482
.
25.
Harth
,
E.
,
Unnikrishnan
,
K. P.
, and
Pandya
,
A. S.
, 1987, “
The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions
,”
Science
0036-8075,
237
, pp.
184
187
.
26.
Utkin
,
V. I.
, 1977, “
Variable Structure Systems With Sliding Mode: A Survey
,”
IEEE Trans. Autom. Control
0018-9286,
AC-22
, pp.
212
222
.
27.
Utkin
,
V. I.
, 1978,
Sliding Mode and Their Application in Variable Structure Systems
, English Translation,
Mir
,
MOSCON
.
28.
Ryan
,
E. P.
, and
Corless
,
M.
, 1984, “
Ultimate Boundedness and Asymptotic Stability of a Class of Uncertain Dynamical Systems via Continuous and Discontinuous Feedback Control
,”
IMA J. Math. Control Inf.
0265-0754,
1
, pp.
223
242
.
29.
Morgan
,
R. G.
, and
Ozguner
,
U.
, 1983, “
A Decentralised Variable Structure Control Algorithm for Robotic Manipulators
,”
Proceedings of the 21st Annual Conference on Communication, Control and Computing
,
Monticello, IL
, pp. 314–324.
30.
Yeung
,
K. S.
, and
Chen
,
V. P.
, 1988, “
A New Controller Design for Manipulators Using the Theory of Variable Structure Systems
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
2
), pp.
200
206
.
31.
Habibi
,
S. R.
, and
Richards
,
R. J.
, 1992, “
Sliding Mode Control of an Electrically Powered Industrial Robot
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
139
(
2
), pp.
207
225
.
32.
Asada
,
H.
, and
Slotine
,
J. J. E.
, 1986,
Robot Analysis and Control
,
Wiley
,
New York
.
33.
Bailey
,
E.
, and
Arapostathis
,
A.
, 1984, “
Simple Sliding Mode Control Scheme Applied to Robot Manipulators
,”
Int. J. Control
0020-7179,
45
(
4
), pp.
1197
1209
.
34.
Slotine
,
J. J. E.
, 1984, “
Sliding Controller Design for Nonlinear Systems
,”
Int. J. Control
0020-7179,
40
(
2
), pp.
421
434
.
35.
Slotine
,
J. J. E.
, 1985, “
The Robust Control of Robot Manipulators
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
49
64
.
36.
Buhler
,
H.
, 1986,
Reglage par Mode de Glissement
,
Press Polytechnique Romande
,
Lausanne
.
37.
Gupta
,
M.
,
Jin
,
L.
, and
Homma
,
N.
, 2003,
Static and Dynamic Neural Networks
,
Wiley
,
New York
.
38.
Haykin
,
S.
, 2001,
Kalman Filtering and Neural Networks
,
Wiley
,
New York
.
39.
Stubberud
,
S.
,
Owen
,
M.
, and
Lobbia
,
R.
, 1998, “
Adaptive Extended Kalman Filter Using Artificial Neural Networks
,”
International Journal of Smart Engineering System Design
,
1
(
3
), pp.
207
221
.
40.
Zhan
,
R.
, and
Wan
,
J.
, 2006, “
Neural Network-Aided Adaptive Unscented Kalman Filter for Nonlinear State Estimation
,”
IEEE Signal Process. Lett.
1070-9908,
13
(
7
), pp.
445
448
.
41.
Parlos
,
A.
,
Menon
,
S.
, and
Atiya
,
A.
, 2001, “
An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
12
(
6
), pp.
1411
1432
.
42.
Kailath
,
T.
, 1980,
Linear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.