There exist many methods of adding damping to a vibrating structure; however, eddy current damping is one of few that can function without ever coming into contact with that structure. This magnetic damping scheme functions due to the eddy currents that are generated in a conductive material when it is subjected to a time changing magnetic field. Due to the circulation of these currents, a magnetic field is generated, which interacts with the applied field resulting in a force. In this manuscript, an active damper will be theoretically developed that functions by dynamically modifying the current flowing through a coil, thus generating a time-varying magnetic field. By actively controlling the strength of the field around the conductor, the induced eddy currents and the resulting damping force can be controlled. This actuation method is easy to apply and allows significant magnitudes of forces to be applied without ever coming into contact with the structure. Therefore, vibration control can be applied without inducing mass loading or added stiffness, which are downfalls of other methods. This manuscript will provide a theoretical derivation of the equations defining the electric fields generated and the dynamic forces induced in the structure. This derivation will show that when eddy currents are generated due to a variation in the strength of the magnetic source, the resulting force occurs at twice the frequency of the applied current. This frequency doubling effect will be experimentally verified. Furthermore, a feedback controller will be designed to account for the frequency doubling effect and a simulation performed to show that significant vibration suppression can be achieved with this technique.

1.
Wiederick
,
H. H.
,
Gauthier
,
N.
,
Campbell
,
D. A.
, and
Rochon
,
P.
, 1987, “
Magnetic Braking: Simple Theory and Experiment
,”
Am. J. Phys.
0002-9505,
55
(
6
), pp.
500
503
.
2.
Nagaya
,
K.
,
Kojima
,
H.
,
Karubek
,
Y.
, and
Kibayashi
,
H.
, 1984, “
Braking Forces and Damping Coefficients of Eddy Current Brakes Consisting of Cylindrical Magnets and Plate Conductors of Arbitrary Shape
,”
IEEE Trans. Magn.
0018-9464,
MAG-20
(
6
), pp.
2136
2145
.
3.
Cadwell
,
L. H.
, 1996, “
Magnetic Damping: Analysis of an Eddy Current Brake Using an Airtrack
,”
Am. J. Phys.
0002-9505,
64
, pp.
917
23
.
4.
Lee
,
K.
, and
Park
,
K.
, 1999, “
Optimal Robust Control of a Contact-less Brake System Using an Eddy Current
,”
Mechatronics
0957-4158,
9
(
6
), pp.
615
631
.
5.
Gunter
,
E. J.
,
Humphris
,
R. R.
, and
Severson
,
S. J.
, 1983, “
Design Study of Magnetic Eddy-Current Vibration Dampers for Application to Cryogenic Turbomachinery
,” University of Virginia Report UVA/528210/MAE84/101, NASA Grant NAG-3-263.
6.
Fung
,
R.-F.
,
Sun
,
J.-H.
, and
Hsu
,
S.-M.
, 2002, “
Vibration control of the Rotating Flexable-Shaft/Multi-Flexable-Disk System With the Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
519
526
.
7.
Cunningham
,
R. E.
, 1986, “
Passive Eddy Current Damping as a Means of Vibration Control in Cryogenic Turbomachinery
,” NASA Technical Paper No. NASA-TP-2562, Access No. N86-24722.
8.
Kligerman
,
Y.
, and
Gottlieb
,
O.
, 1998, “
Dynamics of a Rotating System With a Nonlinear Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
848
853
.
9.
Sodano
,
H. A.
, and
Bae
,
J. S.
, 2004, “
Eddy Current Damping in Structures
,”
Shock Vib. Dig.
0583-1024,
36
(
6
), pp.
469
478
.
10.
Kwak
,
M. K.
,
Lee
,
M. I.
, and
Heo
,
S.
, 2003, “
Vibration Suppression Using Eddy Current Damper
,”
Journal of the Korean Society for Noise and Vibration Engineering
,
13
(
10
), pp.
760
766
.
11.
Bae
,
J. S.
,
Kwak
,
M. K.
, and
Inman
,
D. J.
, 2005, “
Vibration Suppression of Cantilever Beam Using Eddy Current Damper
,”
J. Sound Vib.
0022-460X,
284
(
3–5
), pp.
805
824
.
12.
Sodano
,
H. A.
,
Bae
,
J. S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
, 2005, “
Concept and Model of Eddy Current Damper for Vibration Suppression of a Beam
,”
J. Sound Vib.
0022-460X,
305
(
4–5
), pp.
596
613
.
13.
Sodano
,
H. A.
,
Bae
,
J. S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
, 2005, “
Modeling and Application of Passive Eddy Current Damper for the Suppression of Membrane Vibrations
,”
AIAA J.
0001-1452,
44
(
3
), pp.
541
549
.
14.
Sodano
,
H. A.
,
Bae
,
J. S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
, 2005, “
Improved Concept and Model of Eddy Current Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
295
302
.
15.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
, 2004, “
Development of a New Semi-Active Magnetic Damper for Vibration Suppression
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
318
327
.
16.
Tani
,
J.
,
Minagawa
,
M.
,
Ohtomo
,
K.
, and
Saigo
,
M.
, 1990, “
Dynamic Behavior of Thin Plates under Impulsive Magnetic Field
,”
IEEE Trans. Magn.
0018-9464,
26
(
2
), pp.
544
547
.
17.
Morisue
,
T.
, 1990, “
Analysis of a Coupled Problem: The Felix Cantilevered Beam
,”
IEEE Trans. Magn.
0018-9464,
26
(
2
), pp.
540
543
.
18.
Tsubi
,
H.
,
Tanaka
,
M.
, and
Misaki
,
T.
, 1990, “
Eddy current and Deflection Analysis of a Thin Plate in Time-Changing Magnetic Fields
,”
IEEE Trans. Magn.
0018-9464,
26
(
5
), pp.
1647
1649
.
19.
Takagi
,
T.
,
Tani
,
J.
,
Matsuda
,
S.
, and
Kawamura
,
S.
, 1992, “
Analysis and Experiment of Dynamic Deflection of a Thin Plate With a Coupling Effect
,”
IEEE Trans. Magn.
0018-9464,
28
(
2
), pp.
1259
1262
.
20.
Takagi
,
T.
, and
Tani
,
J.
, 1994, “
Dynamic Behavior of a Plate in Magnetic Field by Full Coupling and MMD Methods
,”
IEEE Trans. Magn.
0018-9464,
30
(
5
), pp.
3296
3299
.
21.
Lee
,
J. S.
, 1996, “
Dynamic Stability of Beam Plates in Transverse Magnetic Fields
,”
J. Eng. Mech.
0733-9399,
122
(
2
), pp.
89
94
.
22.
Cheng
,
D. K.
, 1992,
Field and Wave Electromagnetics
,
Addison-Wesley
,
New York
.
23.
Fanson
,
J. L.
, and
Caughey
,
T. K.
, 1987, “
Positive Position Feedback Control for Large Space Structures
,”
Proceeding of the 28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference
, Ap. 9–10, Monterey, CA, AIAA Paper No. 87-0902, pp.
588
598
.
You do not currently have access to this content.