This paper considers collinear lumped-parameter structures where each mass in the structure has a single degree of freedom. Specifically, we analyze the zeros and relative degree of the single-input, single-output (SISO) transfer function from the force applied to an arbitrary mass to the position, velocity, or acceleration of another mass. In particular, we show that every SISO force-to-motion transfer function of a collinear lumped-parameter structure has no positive (real open-right-half-plane) zeros. In addition, every SISO force-to-position transfer function of a spring-connected collinear lumped-parameter structure has no non-negative (real closed-right-half-plane) zeros. As a consequence, the step response does not exhibit initial undershoot. In addition, we derive an expression for the relative degree of SISO force-to-position transfer functions. The formula depends on the placement of springs and dashpots, but is independent of the values of the spring constants and damping coefficients. Next, we consider the special case of serially connected collinear lumped-parameter structures. In this case, we show that every SISO force-to-position transfer function of a serially connected collinear lumped-parameter structure is minimum phase, that is, has no closed-right-half-plane zeros. The proofs of these results rely heavily on graph-theoretic techniques.

1.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
, 1992,
Feedback Control Theory
,
Macmillan
, NY.
2.
Bernstein
,
D. S.
, 2002, “
What Makes Some Control Problems Hard?
IEEE Control Syst. Mag.
0272-1708,
22
, pp.
8
19
.
3.
Hoagg
,
J. B.
, and
Bernstein
,
D. S.
, “
Nonminimum-Phase Zeros Much To Do About Nothing
,” IEEE Contr. Sys. Mag. (to be published).
4.
Maslen
,
E. H.
, 1995, “
Positive Real Zeros in Flexible Beams
,”
Shock Vib.
1070-9622,
2
, pp.
429
435
.
5.
Miu
,
D. K.
, 1991, “
Physical Interpretation of Transfer Function Zeros for Simple Control Systems With Mechanical Flexibilities
,”
J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
419
424
.
6.
Mechatronics
, 1993,
Springer-Verlag
, NY.
7.
Williams
,
T.
, 1989, “
Transmission-Zero Bounds for Large Space Structures, With Applications
,”
J. Guid. Control Dyn.
0731-5090,
1
, pp.
33
38
.
8.
Lin
,
J. L.
,
Chan
,
K. C.
,
Sheen
,
J. J.
, and
Chen
,
S. J.
, 2004, “
Interlacing Properties for Mass-Dashpot-Spring Systems With Proportional Damping
,”
J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
426
430
.
9.
Miu
,
D. K.
, and
Yang
,
B.
, 1994, “
On Transfer Function Zeros of General Colocated Control Systems With Mechanical Flexibilities
,”
J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
151
154
.
10.
Calafiore
,
G.
,
Carabelli
,
S.
, and
Bona
,
B.
, 1997, “
Structural Interpretation of Transmission Zeros for Matrix Second-Order Systems
,”
Automatica
0005-1098,
33
, pp.
745
748
.
11.
Hong
,
J.
, and
Bernstein
,
D. S.
, 1998, “
Bode Integral Constraints, Colocation, and Spillover in Active Noise and Vibration Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
, pp.
111
120
.
12.
Lin
,
J. L.
, and
Juang
,
J. N.
, 1995, “
Sufficient Conditions for Minimum-Phase Second-Order Linear Systems
,”
J. Vib. Control
1077-5463,
1
, pp.
183
199
.
13.
Lin
,
J. L.
, 1999, “
On Transmission Zeros of Mass-Dashpot-Spring Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
179
183
.
14.
Lin
,
J. L.
, and
Chen
,
S. J.
, 1999, “
Minimum-Phase Robustness for Second-Order Linear Systems
,”
J. Guid. Control Dyn.
0731-5090,
2
, pp.
229
234
.
15.
Ishitobi
,
M.
, and
Liang
,
S.
, 2004, “
On Zeros of Discrete-Time Models for Collocated Mass-Damper-Spring Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
205
210
.
16.
Chan
,
K. C.
, and
Lin
,
J. L.
, 2005, “
On the Minimum Phase Property of Mass-Dashpot-Spring Sampled Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
642
647
.
17.
Wu
,
T. S.
, 1964, “
Structural Analysis by System Theory
,”
Dev. Theor. Appl. Mech.
0070-4598,
2
, pp.
605
628
.
18.
Wittenburg
,
J.
, 1977,
Dynamical Systems of Rigid Bodies
,
Teubner
, Stuttgart.
19.
1994, “
Topological Description of Articulated Systems
,” in
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
,
M. F. O. S.
Pereira
and
J. A. C.
Ambrósio
, eds.,
Kluwer
, Boston, pp.
159
196
.
20.
Arczewski
,
K.
, 1990, “
Applications of Graph Theory to the Mathematical Modelling of a Class of Rigid Body Systems
,”
J. Franklin Inst.
0016-0032,
327
(
2
), pp.
209
223
.
21.
McPhee
,
J. J.
, 1998, “
Automatic Generation of Motion Equations for Planar Mechanical Systems Using the New Set of ‘Branch Coordinates’
,”
Mech. Mach. Theory
0094-114X,
33
, pp.
805
823
.
22.
Kaveh
,
A.
, and
Sayarinejad
,
M.
, 2004, “
Graph Symmetry and Dynamic Systems
,”
Comput. Struct.
0045-7949,
82
, pp.
2229
2240
.
23.
Peppard
,
L. E.
, 1974, “
String Stability of Relative-Motion PID Vehicle Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
19
, pp.
579
581
.
24.
Swaroop
,
D.
, and
Hedrick
,
J. K.
, 1996, “
String Stability of Interconnected Systems
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
349
357
.
25.
Eyre
,
J.
,
Yanakiev
,
D.
, and
Kanellakopoulos
,
I.
, 1998, “
Simplified Framework for String Stability Analysis of Automated Vehicles
,”
Veh. Syst. Dyn.
0042-3114,
30
, pp.
375
405
.
26.
Berman
,
A.
, and
Plemmons
,
R. J.
, 1979,
Non-Negative Matrices in the Mathematical Sciences
,
Academic
, New York.
27.
Merris
,
R.
, 1994, “
Laplacian Matrices and Graphs: A Survey
,”
Linear Algebr. Appl.
0024-3795,
197–198
, pp.
143
176
.
28.
Berman
,
A.
,
Neumann
,
M.
, and
Stern
,
R. J.
, 1989,
Non-Negative Matrices in Dynamic Systems
,
Wiley
, New York.
29.
Bernstein
,
D. S.
, 2005,
Matrix Mathematics
,
Princeton University Press
, Princeton.
30.
Bernstein
,
D. S.
, and
Bhat
,
S. P.
, 1995, “
Lyapunov Stability, Semistability, and Asymptotic Stability of Matrix Second-Order Systems
,”
Trans. ASME
0097-6822,
117
, pp.
145
152
.
31.
Norimatsu
,
T.
, and
Ito
,
M.
, 1961, “
On the Zero NonRegular Control System
,”
J. Inst. Electron. Commun. Eng. Jpn.
0373-6121,
81
, pp.
566
575
.
32.
Mita
,
T.
, and
Yoshida
,
H.
, 1981, “
Undershooting Phenomenon and Its Control in Linear Multivariable Servomechanisms
,”
IEEE Trans. Autom. Control
0018-9286,
26
, pp.
402
407
.
33.
Vidyasagar
,
M.
, 1986, “
On the Undershoot and Nonminimum Phase Zeros
,”
IEEE Trans. Autom. Control
0018-9286,
31
(
5
), p.
440
.
You do not currently have access to this content.