In this paper we present heterodyne control as a technique for digital feedback control of a high-frequency, narrowband micromechanical oscillator. In this technique, isolated and synchronized hardware downconversion and upconversion components are used in conjunction with digital signal processing (DSP) to control the oscillator. Heterodyne control offers reduced computational effort for the digital control of high-frequency, narrow band system, the reduction of noise outside the pass-band, and the generation of lock-in amplifier signals. We present heterodyne control with design criteria in the context of magnetic resonance force microscopy (MRFM) cantilever control. Finally, we present experimental results of heterodyne control applied to an emulated radio-frequency microcantilever system.

1.
Sidles
,
J. A.
, 1991, “
Noninductive Detection of Single-Proton Magnetic Resonance
,”
Appl. Phys. Lett.
0003-6951,
58
, pp.
2854
2856
.
2.
Sidles
,
J. A.
,
Garbini
,
J. L.
,
Bruland
,
K. J.
,
Rugar
,
D.
,
Züger
,
O.
,
Hoen
,
S.
, and
Yannoni
,
C. S.
, 1995, “
Magnetic Resonance Force Microscopy
,”
Rev. Mod. Phys.
0034-6861,
67
, pp.
249
265
.
3.
Garbini
,
J. L.
,
Bruland
,
K. J.
,
Dougherty
,
W. M.
, and
Sidles
,
J. A.
, 1996, “
Optimal Control of Force Microscope Cantilevers. I. Controller Design
,”
J. Appl. Phys.
0021-8979,
80
, pp.
1951
1958
.
4.
Bruland
,
K. J.
,
Garbini
,
J. L.
,
Dougherty
,
W. M.
, and
Sidles
,
J. A.
, 1996, “
Optimal Control of Force Microscope Cantilevers. II. Magnetic Coupling Implementation
,”
J. Appl. Phys.
0021-8979,
80
, pp.
1959
1964
.
5.
Proakis
,
J. G.
, 2001,
Digital Communications
, 2001, 4th ed.,
McGraw-Hill
,
New York
.
6.
Bracewell
,
R.
, 1965,
The Fourier Transform and Its Applications
,
McGraw-Hill
,
New York
.
7.
Friedland
,
B.
, 1986,
Control System Design
,
McGraw-Hill
,
New York
.
8.
Leon-Garcia
,
A.
, 1994,
Probability and Random Processes for Electrical Engineering
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
9.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
, 2002,
Feedback Control of Dynamic Systems
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.