In this paper, a new systematic controller synthesis methodology for use with highly nonlinear multivariable and nonautonomous systems with application to a class of multivariable nonlinear aerospace systems is presented. The procedure is applied to a typical liquid propellant engine, and the performance of the resulting new control system is presented. In this research, the nonlinear dynamic model of the engine, which includes both soft and hard nonlinearities, is developed. The systematic controller design procedure is based on describing function models of the engine coupled with a new multivariable exact model matching procedure.
Issue Section:
Technical Papers
Keywords:
control system synthesis,
multivariable control systems,
nonlinear control systems,
aerospace control,
aerospace engines,
aerospace propulsion,
nonlinear dynamical systems,
control nonlinearities,
Describing Functions,
Optimization,
Design Methodologies,
Fourier Integrals,
Liquid Propellant Engine,
Modeling,
Simulation,
Propulsion
1.
Nassirharand
, A.
, and Karimi
, H.
, 2002
, “Input/Output Characterization of Highly Nonlinear Multivariable Systems
,” Adv. Eng. Software
, 33
, pp. 825
–830
.2.
Santana, A., Jr., Barbosa, F. I., and Niwa, M., 2000, “Modeling and Robust Analysis of a Liquid Rocket Engine,” 36th AIAA Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 8 pages.
3.
Schinstock
, D. E.
, Scott
, D. A.
, and Haskew
, Tim A.
, 1988
, “Modeling and Estimation for Electromechanical Thrust Vector Control of Rocket Engines
,” AIAA J.
, 14
, pp. 440
–446
.4.
Lorenzo
, C. F.
, Ray
, A.
, and Holmes
, M. S.
, 2001
, “Nonlinear Control of a Reusable Rocket Engine for Life Extension
,” AIAA J.
, 17
, pp. 998
–1004
.5.
Nassirharand, A., and Taylor, J. H., 1990, “Synthesis of Linear PID Controllers for Nonlinear Multivariable Systems,” in Proceedings of American Control Conference, San Diego, CA, pp. 2223–2228.
6.
Katebi
, S. D.
, and Katebi
, M. R.
, 1987
, “Combined Frequency and Time Domain Technique for the Design of Compensators for Nonlinear Feedback Control Systems
,” Int. J. Syst. Sci.
, 18
, pp. 2001
–2017
.7.
Slotine, J. J., and Li, W., 1991, Applied Nonlinear Control, Prentice–Hall.
8.
Hunt
, L. R.
, Su
, R.
, and Meyer
, G.
, 1987
, “Global Transformation of Nonlinear Systems
,” IEEE Trans. Autom. Control
, 28
, pp. 24
–30
.9.
Slotine
, J. J.
, and Sastry
, S. S.
, 1983
, “Tracking Control of Nonlinear Systems Using Sliding Surfaces With Application to Robot Manipulation
,” Int. J. Control
, 38
, pp. 465
–492
.10.
Utkin
, V.
, 1983
, “Variable Structure Systems With Sliding Modes
,” IEEE Trans. Autom. Control
, 22
, pp. 212
–222
.11.
Itkis, U., 1976, Control Systems of Variable Structures, John Wiley, Inc.
12.
Horowitz
, I. M.
, 1976
, “Synthesis of Feedback Systems With Nonlinear Time-Varying Uncertain Plant to Satisfy Quantitative Performance Specifications
,” Proc. IEEE
, 64
, pp. 123
–130
.13.
Taylor
, D. G.
et al., 1989
, “Adaptive Regulation of Nonlinear Systems With Unmodeled Dynamics
,” IEEE Trans. Autom. Control
, 34
, pp. 405
–412
.14.
Nagurka
, M. L.
, and Yen
, V.
, 1990
, “Fourier-Based Optimal Control of Nonlinear Dynamic Systems
,” ASME J. Dyn. Syst., Meas., Control
, 112
, pp. 17
–26
.15.
Suzuki, A., and Hedrick, J. Karl, 1985, “Nonlinear Controller Design by an Inverse Random-Input Describing Function Methods,” in Proceedings of the American Control Conference, Boston, MA, pp. 1236–1241.
16.
Taylor, J. H., 1983, “A Systematic Nonlinear Controller Design Approach Based on Quasilinear Models,” in Proceedings of the American Control Conference, San Francisco, CA, pp. 141–145.
17.
Taylor, J. H., and Strobel, K. L., 1985, “Nonlinear Control System Design Based on Quasilinear System Models,” in Proceedings of the American Control Conference, Boston, MA, pp. 1242–1247.
18.
Nassirharand
, A.
, 1991
, “Design of Dual-Range Linear Controllers for Nonlinear Systems
,” ASME J. Dyn. Syst., Meas., Control
, 113
, pp. 590
–596
.19.
Nassirharand
, A.
, Taylor
, J. H.
, and Reid
, K. N.
, 1988
, “Controller Design for Nonlinear Systems Based on Simultaneous Stabilization Theory and Describing Function Models
,” ASME J. Dyn. Syst., Meas., Control
, 110
, pp. 134
–143
.20.
Nassirharand
, A.
, and Taylor
, J. H.
, 1991
, “Frequency-Domain Modeling of Nonlinear Multivariable Systems
,” Control Theory Adv. Technol.
, 7
, pp. 201
–214
.21.
Nassirharand
, A.
, 1988
, “Identification of Frequency Domain Models for Nonlinear Systems
,” Adv. Eng. Software
, 10
, pp. 195
–201
.22.
Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., 1983, Engineering Optimization, John Wiley, Inc.
23.
Beliayev, E. N., Chevanov, V. K., and Chervakov, V. V., 1999, Mathematical Modeling of Working Process in Liquid Propellant Rocket Engines, MAI Publications, Moscow (in Russian).
Copyright © 2004
by ASME
You do not currently have access to this content.