A technique based on Horowitz’s nonlinear quantitative feedback theory is presented, in which the size of the uncertainty is reduced by cancellation of the plant nonlinearity through nonlinear inverse compensation. Linear identification of the open loop nonlinear inverse compensated plant is used to obtain an unstructured uncertainty representation, however, rather than computing QFT templates based on parametric uncertainty. An increase in achievable robust performance with any linear robust performance control design technique may then be obtained. The method is experimentally validated by application to a SISO automotive SI engine idle speed control problem using an electric dynamometer.

1.
Hrovat
,
D.
, and
Sun
,
J.
,
1997
, “
Models and Control Methodologies for IC Engine Idle Speed Control Design
,”
Control Eng. Pract.
,
5
(
8
), pp.
1093
1100
.
2.
Nicolao
,
G. D.
,
Rossi
,
C.
,
Scattolini
,
R.
, and
Suffritti
,
M.
,
1999
, “
Identification and Idle Speed Control of Internal Combustion Engines
,”
Control Eng. Pract.
,
7
, pp.
1061
1069
.
3.
Horowitz
,
I.
,
1981
, “
Improvement in Quantitative Non-linear Feedback Design by Cancellation
,”
Int. J. Control
,
34
, pp.
547
560
.
4.
Petridis
,
A. P.
, and
Shenton
,
A. T.
,
2000
, “
Non-linear Inverse Compensation of an SI Engine by System Identification for Robust Performance Control
,”
Inverse Prob. in Eng.
,
8
, pp.
163
176
.
5.
Dorey, R. E., Maclay, D., Shenton, A. T., and Shafiei, Z., 1995, “Advanced Powertrain Control Strategies,” IFAC Workshop on Automotive Control, Ascona, Switzerland, pp. 144–149.
6.
Hariri, B., 1996, “Modeling and Identification of SI Engines for Control System Design,” Ph.D. thesis, Liverpool University.
7.
Hariri
,
B.
,
Shenton
,
A. T.
, and
Dorey
,
R. E.
,
1998
, “
Parameter Identification, Estimation and Dynamometer Validation of the Non-linear Dynamics of an Automotive Spark-Ignition Engine
,”
J. Vib. Control
,
4
(
1
), pp.
47
59
.
8.
Detchmendy
,
D. M.
, and
Sridhar
,
R.
,
1966
, “
Sequential Estimation of States and Parameters in Noisy Nonlinear Dynamical Systems
,”
ASME J. Basic Eng.
,
88
(
2
), pp.
362
368
.
9.
Cambridge Control, 1994, Nonlinear Identification Toolbox, Cambridge Control Limited.
10.
Diop
,
S.
,
1991
, “
Elimination in Control Theory
,”
Math. Control Signals Systems
,
4
, pp.
17
32
.
11.
Ritt, J. F., 1932, Differential Equations From the Algebraic Standpoint, American Mathematical Society, New York.
12.
Seidenberg, A., 1946, “An Elimination Theory for Differential Algebra,” Univ. California Publ. Math. (N.S.), 3 pp. 31–56.
13.
Forsman, K., 1992, “Elementary Aspects of Constructive Commutative Algebra,” Dept. of Electrical Engineering, Linko¨ping Univ., Sweden.
14.
Buchberger
,
B.
,
1970
, “
Ein Algorithmisches Kriterium fu¨r die Lo¨sbarkeit eines Algebraischen Gleichungssystems
,”
Aequ. Math.
,
4
, pp.
347
383
.
15.
Buchberger, B., 1985, “Gro¨bner Bases: An Algorithmic Method in Polynomial Theory,” In Multidimensional Systems Theory, N. K. Bose ed., Dordrecht Reidel, pp. 184–232.
16.
Petridis, A. P., and Shenton, A. T., 2002, “Linear Robust Control of Identified Input-Output Non-linear Inverse Compensated SI Engine,” Univ. of Liverpool, Dept. of Engineering Powertrain Control Group: Report No. MES/ATS/INT/040/2002, May.
17.
Petridis, A. P., 2000, “Non-linear Robust Control of S.I. Engines.” Ph.D. thesis, Liverpool Univ.
18.
Besson
,
V.
, and
Shenton
,
A. T.
,
1999
, “
An Interactive Parameter Space Method for Robust Performance in Mixed Sensitivity Problems
,”
IEEE Trans. Autom. Control
,
44
(
6
), pp.
1272
1276
.
19.
Shenton, A. T., and Besson, V., 2000, “Robust Performance S. I. Engine Idle-Speed Control by a Mixed-Sensitivity Parameter Space Method,” 3rd IFAC Symp. on Robust Control Design.
20.
Sandberg
,
I. W.
,
1964
, “
A Frequency-Domain Condition for the Stability of Feedback Systems Containing a Single Time-Varying Nonlinear Element
,”
Bell Syst. Tech. J.
,
43
, pp.
1601
1608
.
You do not currently have access to this content.