Microfluidic devices exhibit a high-aspect ratio in that their channel-widths are much smaller than their overall lengths. High-aspect geometry leads to an unduly large finite element mesh, making the (otherwise popular) finite element method (FEM) a poor choice for modeling microfluidic devices. An alternate computational strategy is to exploit well-known analytical solutions for fluid flow over the narrow channels of a device, and then either (a) assume the same analytical solutions for the cross-flow regions, or (b) exploit these solutions to set-up artificial boundary conditions over the cross-flow regions. Such simplified models are computationally far superior to brute-force FEM, but do not support the generality or flexibility of FEM. In this paper, we propose a third strategy for exploiting the analytical solutions: (c) directly incorporate them into standard FE-based analysis via algebraic reduction techniques. The advantages of the proposed strategy are (1) designers can use standard computer-aided design/computer-aided engineering (CAD/CAE) environments to model, analyze, and postprocess microfluidic simulation; (2) well-established dual-weighted residuals can be used to estimate modeling errors; and (3), if desired, one can eliminate the dependency on analytical solutions over selected regions, and instead revert to brute-force FEM. The simplicity and generality of the proposed method is inherited from the model reduction process, so are its theoretical properties, while simultaneously its computational efficiency is inherited from the use of analytical solutions.

1.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
, 2004, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
381
411
.
2.
Qiao
,
R.
, and
Aluru
,
N. R.
, 2002, “
A Compact Model for Electroosomotic Flows in Microfluidic Devices
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
625
635
.
3.
Lin
,
J. -Y.
,
Fu
,
L. -M.
, and
Yang
,
R. -J.
, 2002, “
Numerical Simulation of Electrokinetic Focusing in Microfluidic Chips
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
955
961
.
4.
Feng
,
J.
,
Zuo
,
C.
,
Peng
,
Z.
, and Deyi, Z., 2005, “
Optimization of Turn Geometries in Microfluidic Devices
,”
Proceedings of the 2005 International Conference on MEMS, NANO and Smart Systems (ICMENS‘05)
, Banaff, Alberta, Canada,
IEEE
.
5.
Ren
,
L.
,
Sinton
,
D.
, and
Li
,
D.
, 2003, “
Numerical Simulation of Microfluidic Injection Processes in Crossing Microchannels
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
739
747
.
6.
Lienemann
,
J.
,
Rudnyi
,
E. B.
, and
Korvink
,
J. G.
, 2006, “
MST MEMS Model Order Reduction: Requirements and Benchmarks
,”
Linear Algebr. Appl.
0024-3795,
415
, pp.
469
498
.
7.
Meyer
,
M.
, and
Matthies
,
H. G.
, 2003, “
Efficient Model Reduction in Non-Linear Dynamics Using the Karhunen-Loeve Expansion and Dual-Weighted-Residual Methods
,”
Comput. Mech.
0178-7675,
31
(
1–2
), pp.
179
191
.
8.
Wittig
,
T.
,
Schuhmann
,
R.
, and
Weiland
,
T.
, 2006, “
Model Order Reduction for Large Systems in Computational Electromagnetics
,”
Linear Algebr. Appl.
0024-3795,
415
, pp.
499
530
.
9.
Treuille
,
A.
,
Lewis
,
A.
, and
Popovic
,
Z.
, 2006, “
Model Reduction for Real-time Fluids
,”
ACM Trans. Graphics
0730-0301,
25
(
3
), pp.
826
834
.
10.
Smith
,
B.
,
Bjorstad
,
P.
, and
Gropp
,
W.
, 1996,
Domain Decomposition
,
Cambridge University Press
,
Cambridge, England
.
11.
Salimbahrami
,
B.
, and
Lohmann
,
B.
, 2006, “
Order Reduction of Large Scale Second-Order Systems Using Krylov Subspace Methods
,”
Linear Algebr. Appl.
0024-3795,
415
, pp.
385
405
.
12.
Penzl
,
T.
, 2006, “
Algorithms for Model Reduction of Large Dynamics Systems
,”
Linear Algebr. Appl.
0024-3795,
415
, pp.
322
343
.
13.
Gugercin
,
S.
, and
Athanasios
,
C. A.
, 2006, “
Model Reduction of Large-Scale Systems by Least Squares
,”
Linear Algebr. Appl.
0024-3795,
415
, pp.
290
321
.
14.
Gallivan
,
K.
,
Vandendorpe
,
A.
, and
Van Dooren
,
P.
, 2003, “
Model Reduction Via Truncation: An Interpolation Point of View
,”
Linear Algebr. Appl.
0024-3795,
375
, pp.
115
134
.
15.
Krysl
,
P.
,
Lall
,
S.
, and
Maresden
,
J. E.
, 2001, “
Dimensional Model Reduction in Non-Linear Finite-Element Dynamics of Solids and Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
51
, pp.
479
504
.
16.
Wesseling
,
P.
, and
Oosterlee
,
C. W.
, 2001, “
Geometric Multigrid With Applications to Computational Fluid Dynamics
,”
J. Comput. Appl. Math.
0377-0427,
128
, pp.
311
334
.
17.
Adams
,
M.
, 2002, “
Evaluation of Three Unstructured Multigrid Methods on 3D Finite Element Problems in Solid Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
519
534
.
19.
Ainsworth
,
M.
, and
Oden
,
J. T.
, 2000,
A Posteriori Error Estimation in Finite Element Analysis
,
Wiley
,
New York
.
20.
COMSOL
, 2005, FEMLAB 3.1, www.comsol.comwww.comsol.com.
21.
Bowden
,
S. A.
,
Wilson
,
R.
,
Taylor
,
C.
,
Cooper
,
J. M.
, and
Parnell
,
J.
, 2007, “
The Extraction of Intracrystalline Biomarkers and Other Organic Compounds From Sulphate Minerals Using a Microfluidic Format—a Feasibility Study for Remote Fossil-Life Detection Using a Microfluidic H-Cell
,”
Int. J. Astrobiol.
,
6
, pp.
27
36
. 1473-5504
You do not currently have access to this content.