Abstract

Human–robot collaboration (HRC), as an important role in intelligent manufacturing, is widely utilized in modern factories. Mobile manipulators offer greater flexibility due to the ability to simultaneously move their bases and arms. This provides them an advantage in facing challenging tasks such as flexible production and intelligent manufacturing. The environment of modern factories is complex, with slopes and thresholds at the entrance. Stability plays a fundamental role in complex environments. Therefore, for the future deployment and application of mobile manipulator in HRC, a novel dynamic tip-over avoidance method is proposed for mobile manipulators based on the extended zero-moment point (ZMP) algorithm. This method extends the traditional ZMP stability criterion into three dimensions, deriving a system-wide three-dimensional (3D) zero-moment point. The integration of the extended ZMP with redundant features facilitates adaptive weight matrix adjustments, enabling the robot to adapt its motion based on environmental constraints, thus preventing instability such as tip-over. Simulation verification is carried out with coppeliasim. Experimental verification is performed using the MR2000 + FR3 mobile manipulator. The results confirm that the extended ZMP algorithm effectively prevents tipping in complex environments.

References

1.
Fang
,
C.
,
Peternel
,
L.
,
Seth
,
A.
,
Sartori
,
M.
,
Mombaur
,
K.
, and
Yoshida
,
E.
,
2023
, “
Human Modeling in Physical Human-Robot Interaction: A Brief Survey
,”
IEEE Robot. Autom. Lett.
,
8
(
9
), pp.
5799
5806
.
2.
Zhang
,
H.
,
Sheng
,
Q.
,
Hu
,
J.
,
Sheng
,
X.
,
Xiong
,
Z.
, and
Zhu
,
X.
,
2022
, “
Cooperative Transportation With Mobile Manipulator: A Capability Map-Based Framework for Physical Human–Robot Collaboration
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4396
4405
.
3.
Wahrmann
,
D.
,
Hildebrandt
,
A.-C.
,
Schuetz
,
C.
,
Wittmann
,
R.
, and
Rixen
,
D.
,
2019
, “
An Autonomous and Flexible Robotic Framework for Logistics Applications
,”
J. Intell. Rob. Syst.
,
93
(
3
), pp.
419
431
.
4.
Teng
,
T.
,
Fernandes
,
M.
,
Gatti
,
M.
,
Poni
,
S.
,
Semini
,
C.
,
Caldwell
,
D.
, and
Chen
,
F.
,
2021
, “
Whole-Body Control on Non-Holonomic Mobile Manipulation for Grapevine Winter Pruning Automation
,”
2021 Sixth IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Chongqing, China
,
July 3–5
, IEEE, pp.
37
42
.
5.
Pankert
,
J.
, and
Hutter
,
M.
,
2020
, “
Perceptive Model Predictive Control for Continuous Mobile Manipulation
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6177
6184
.
6.
Kim
,
W.
,
Lorenzini
,
M.
,
Balatti
,
P.
,
Wu
,
Y.
, and
Ajoudani
,
A.
,
2019
, “
Towards Ergonomic Control of Collaborative Effort in Multi-Human Mobile-Robot Teams
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, IEEE, pp.
3005
3011
.
7.
Wu
,
Y.
,
Balatti
,
P.
,
Lorenzini
,
M.
,
Zhao
,
F.
,
Kim
,
W.
, and
Ajoudani
,
A.
,
2019
, “
A Teleoperation Interface for Loco-Manipulation Control of Mobile Collaborative Robotic Assistant
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3593
3600
.
8.
Lamon
,
E.
,
Leonori
,
M.
,
Kim
,
W.
, and
Ajoudani
,
A.
,
2020
, “
Towards an Intelligent Collaborative Robotic System for Mixed Case Palletizing
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
9128
9134
.
9.
Wu
,
Y.
,
Lamon
,
E.
,
Zhao
,
F.
,
Kim
,
W.
, and
Ajoudani
,
A.
,
2021
, “
Unified Approach for Hybrid Motion Control of MOCA Based on Weighted Whole-Body Cartesian Impedance Formulation
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3505
3512
.
10.
Zhao
,
J.
,
Giammarino
,
A.
,
Lamon
,
E.
,
Gandarias
,
J. M.
,
Momi
,
E. D.
, and
Ajoudani
,
A.
,
2022
, “
A Hybrid Learning and Optimization Framework to Achieve Physically Interactive Tasks With Mobile Manipulators
,”
IEEE Robot. Autom. Lett.
,
7
(
3
), pp.
8036
8043
.
11.
Wu
,
Y.
,
Zhao
,
F.
,
Tao
,
T.
, and
Ajoudani
,
A.
,
2021
, “
A Framework for Autonomous Impedance Regulation of Robots Based on Imitation Learning and Optimal Control
,”
IEEE Robot. Autom. Lett.
,
6
(
1
), pp.
127
134
.
12.
Liao
,
Z.
,
Lorenzini
,
M.
,
Leonori
,
M.
,
Zhao
,
F.
,
Jiang
,
G.
, and
Ajoudani
,
A.
,
2024
, “
An Ergo-Interactive Framework for Human-Robot Collaboration via Learning From Demonstration
,”
IEEE Robot. Autom. Lett.
,
9
(
1
), pp.
359
366
.
13.
Chen
,
L.
,
Chen
,
L.
,
Chen
,
X.
,
Lu
,
H.
,
Zheng
,
Y.
,
Wu
,
J.
,
Wang
,
Y.
,
Zhang
,
Z.
, and
Xiong
,
R.
,
2024
, “
Compliance While Resisting: A Shear-Thickening Fluid Controller for Physical Human-Robot Interaction
,”
Int. J. Robot. Res.
,
43
(
11
), pp.
1769
1769
.
14.
Sirintuna
,
D.
,
Giammarino
,
A.
, and
Ajoudani
,
A.
,
2024
, “
An Object Deformation-Agnostic Framework for Human–Robot Collaborative Transportation
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
2
), pp.
1986
1999
.
15.
Li
,
W.
,
Huang
,
F.
,
Chen
,
Z.
, and
Chen
,
Z.
,
2024
, “
Automatic-Switching-Based Teleoperation Framework for Mobile Manipulator With Asymmetrical Mapping and Force Feedback
,”
Mechatronics
,
99
, p.
103164
.
16.
Ercan Jenny
,
S.
,
Pietrasik
,
L. L.
,
Sounigo
,
E.
,
Tsai
,
P.-H.
,
Gramazio
,
F.
,
Kohler
,
M.
,
Lloret-Fritschi
,
E.
, and
Hutter
,
M.
,
2023
, “
Continuous Mobile Thin-Layer On-Site Printing
,”
Autom. Constr.
,
146
, p.
104634
.
17.
Zhou
,
Z.
,
Yang
,
X.
,
Wang
,
H.
, and
Zhang
,
X.
,
2022
, “
Coupled Dynamic Modeling and Experimental Validation of a Collaborative Industrial Mobile Manipulator With Human-Robot Interaction
,”
Mech. Mach. Theory
,
176
, p.
105025
.
18.
Haddadin
,
S.
, and
Croft
,
E.
,
2016
, “Physical Human–Robot Interaction,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham
, pp.
1835
1874
.
19.
Zhang
,
S.
,
Cheng
,
S.
, and
Jin
,
Z.
,
2024
, “
Variable Trajectory Impedance: A Super-Twisting Sliding Mode Control Method for Mobile Manipulator Based on Identification Model
,”
IEEE Trans. Ind. Electron.
,
72
(
1
), pp.
610
619
.
20.
Kwon
,
J.
,
Choi
,
K.
, and
Park
,
F. C.
,
2021
, “
Kinodynamic Model Identification: A Unified Geometric Approach
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1100
1114
.
21.
Golluccio
,
G.
,
Gillini
,
G.
,
Marino
,
A.
, and
Antonelli
,
G.
,
2021
, “
Robot Dynamics Identification: A Reproducible Comparison With Experiments on the Kinova Jaco
,”
IEEE Rob. Autom. Mag.
,
28
(
3
), pp.
128
140
.
22.
Zhong
,
G.
,
Kobayashi
,
Y.
,
Hoshino
,
Y.
, and
Emaru
,
T.
,
2013
, “
System Modeling and Tracking Control of Mobile Manipulator Subjected to Dynamic Interaction and Uncertainty
,”
Nonlinear Dyn.
,
73
(
1
), pp.
167
182
.
23.
Sun
,
Z.
,
Zhou
,
Y.
,
Tang
,
S.
,
Luo
,
J.
, and
Zhao
,
B.
,
2024
, “
Noise Suppression Zeroing Neural Network for Online Solving the Time-Varying Inverse Kinematics Problem of Four-Wheel Mobile Manipulators With External Disturbances
,”
Artif. Intell. Rev.
,
57
(
8
), p.
211
.
24.
Li
,
W.
, and
Xiong
,
R.
,
2019
, “
Dynamical Obstacle Avoidance of Task- Constrained Mobile Manipulation Using Model Predictive Control
,”
IEEE Access
,
7
, pp.
88301
88311
.
25.
Li
,
W.
, and
Xiong
,
R.
,
2021
, “
A Hybrid Visual Servo Control Method for Simultaneously Controlling a Nonholonomic Mobile and a Manipulator
,”
Front. Inf. Technol. Electron. Eng.
,
22
(
2
), pp.
141
154
.
26.
Quiroz-Omaña
,
J. J.
, and
Adorno
,
B. V.
,
2018
, “
Whole-Body Kinematic Control of Nonholonomic Mobile Manipulators Using Linear Programming
,”
J. Intell. Rob. Syst.
,
91
(
2
), pp.
263
278
.
27.
Kim
,
S.
,
Jang
,
K.
,
Park
,
S.
,
Lee
,
Y.
,
Lee
,
S. Y.
, and
Park
,
J.
,
2019
, “
Whole-Body Control of Non-Holonomic Mobile Manipulator Based on Hierarchical Quadratic Programming and Continuous Task Transition
,”
2019 IEEE Fourth International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Toyonaka, Japan
,
July 3–5
, IEEE, pp.
414
419
.
28.
Sentis
,
L.
, and
Khatib
,
O.
,
2005
, “
Synthesis of Whole-Body Behaviors Through Hierarchical Control of Behavioral Primitives
,”
Int. J. Humanoid Rob.
,
02
(
04
), pp.
505
518
.
29.
Kim
,
D.
,
Lee
,
J.
,
Ahn
,
J.
,
Campbell
,
O.
,
Hwang
,
H.
, and
Sentis
,
L.
,
2018
, “
Computationally-Robust and Efficient Prioritized Whole-Body Controller with Contact Constraints
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
1
8
.
30.
Moro
,
F. L.
, and
Sentis
,
L.
,
2018
, “Whole-Body Control of Humanoid Robots,”
Humanoid Robotics: A Reference
,
A.
Goswami
, and
P.
Vadakkepat
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
1
23
.
31.
Dietrich
,
A.
,
Ott
,
C.
, and
Albu-Schäffer
,
A.
,
2015
, “
An Overview of Null Space Projections for Redundant, Torque-Controlled Robots
,”
Int. J. Rob. Res.
,
34
(
11
), pp.
1385
1400
.
32.
Li
,
M.
,
Yang
,
Z.
,
Zha
,
F.
,
Wang
,
X.
,
Wang
,
P.
,
Li
,
P.
,
Ren
,
Q.
, and
Chen
,
F.
,
2020
, “
Design and Analysis of a Whole-Body Controller for a Velocity Controlled Robot Mobile Manipulator
,”
Sci. China Inform. Sci.
,
63
(
7
), p.
170204
.
33.
Xing
,
H.
,
Torabi
,
A.
,
Ding
,
L.
,
Gao
,
H.
,
Li
,
W.
, and
Tavakoli
,
M.
,
2021
, “
Enhancing Kinematic Accuracy of Redundant Wheeled Mobile Manipulators via Adaptive Motion Planning
,”
Mechatronics
,
79
, p.
102639
.
34.
Xing
,
H.
,
Gong
,
Z.
,
Ding
,
L.
,
Torabi
,
A.
,
Chen
,
J.
,
Gao
,
H.
, and
Tavakoli
,
M.
,
2023
, “
An Adaptive Multi-Objective Motion Distribution Framework for Wheeled Mobile Manipulators via Null-Space Exploration
,”
Mechatronics
,
90
, p.
102949
.
35.
Haviland
,
J.
,
Sunderhauf
,
N.
, and
Corke
,
P.
,
2022
, “
A Holistic Approach to Reactive Mobile Manipulation
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
3122
3129
.
36.
Burgess-Limerick
,
B.
,
Lehnert
,
C.
,
Leitner
,
J.
, and
Corke
,
P.
,
2023
, “
An Architecture for Reactive Mobile Manipulation On-The-Move
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, IEEE, pp.
1623
1629
.
37.
Wang
,
Y.
, and
Wang
,
L.
,
2020
, “
Whole-Body Collision Avoidance Control Design Using Quadratic Programming With Strict and Soft Task Priorities
,”
Rob. Comput. Integr. Manuf.
,
62
, p.
101882
.
38.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, IEEE, pp.
1620
1626
.
39.
Vukobratovic
,
M.
, and
Borovac
,
B.
,
2008
, “
Dynamic Balance Concept and the Maintenance of the Dynamic Balance in Humanoid Robotics
,”
2008 Sixth International Symposium on Intelligent Systems and Informatics
,
Subotica, Serbia
,
Sept. 26–27
, pp.
1
11
.
40.
Or
,
J.
,
2010
, “
A Hybrid CPG–ZMP Control System for Stable Walking of a Simulated Flexible Spine Humanoid Robot
,”
Neural Netw.
,
23
(
3
), pp.
452
460
.
41.
Kim
,
S.
,
Hirota
,
K.
,
Nozaki
,
T.
, and
Murakami
,
T.
,
2018
, “
Human Motion Analysis and Its Application to Walking Stabilization With COG and ZMP
,”
IEEE Trans. Ind. Inf.
,
14
(
11
), pp.
5178
5186
.
42.
de Viragh
,
Y.
,
Bjelonic
,
M.
,
Bellicoso
,
C. D.
,
Jenelten
,
F.
, and
Hutter
,
M.
,
2019
, “
Trajectory Optimization for Wheeled-Legged Quadrupedal Robots Using Linearized ZMP Constraints
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1633
1640
.
43.
Song
,
J.
, and
Sharf
,
I.
,
2020
, “
Time Optimal Motion Planning With ZMP Stability Constraint for Timber Manipulation
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
4934
4940
.
44.
Ding
,
X.
,
Liu
,
Y.
,
Hou
,
J.
, and
Ma
,
Q.
,
2019
, “
Online Dynamic Tip-Over Avoidance for a Wheeled Mobile Manipulator With an Improved Tip-Over Moment Stability Criterion
,”
IEEE Access
,
7
, pp.
67632
67645
.
45.
Cully
,
A.
,
Clune
,
J.
,
Tarapore
,
D.
, and
Mouret
,
J.-B.
,
2015
, “
Robots That Can Adapt Like Animals
,”
Nature
,
521
(
7553
), pp.
503
507
.
46.
Cully
,
A.
, and
Mouret
,
J.-B.
,
2016
, “
Evolving a Behavioral Repertoire for a Walking Robot
,”
Evol. Comput.
,
24
(
1
), pp.
59
88
.
47.
Caron
,
S.
,
Pham
,
Q.-C.
, and
Nakamura
,
Y.
,
2017
, “
ZMP Support Areas for Multicontact Mobility Under Frictional Constraints
,”
IEEE Trans. Rob.
,
33
(
1
), pp.
67
80
.
48.
Hu
,
K.
,
Ott
,
C.
, and
Lee
,
D.
,
2016
, “
Learning and Generalization of Compensative Zero-Moment Point Trajectory for Biped Walking
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
717
725
.
49.
Winkler
,
A. W.
,
Farshidian
,
F.
,
Pardo
,
D.
,
Neunert
,
M.
, and
Buchli
,
J.
,
2017
, “
Fast Trajectory Optimization for Legged Robots Using Vertex-Based ZMP Constraints
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
2201
2208
.
50.
Shin
,
H.-K.
, and
Kim
,
B. K.
,
2014
, “
Energy-Efficient Gait Planning and Control for Biped Robots Utilizing the Allowable ZMP Region
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
986
993
.
51.
Tu
,
Z.
,
Zhang
,
T.
,
Yan
,
L.
, and
Lam
,
T. L.
,
2022
, “
Whole-Body Control for Velocity-Controlled Mobile Collaborative Robots Using Coupling Dynamic Movement Primitives
,”
2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)
,
Ginowan, Japan
,
Nov. 28–30
, IEEE, pp.
119
126
.
52.
Heins
,
A.
,
Jakob
,
M.
, and
Schoellig
,
A. P.
,
2021
, “
Mobile Manipulation in Unknown Environments With Differential Inverse Kinematics Control
,”
2021 18th Conference on Robots and Vision (CRV)
,
Burnaby, BC, Canada
,
May 26–28
, IEEE,pp. 64–71.
53.
Emran
,
B. J.
, and
Najjaran
,
H.
,
2018
, “
A Review of Quadrotor: An Underactuated Mechanical System
,”
Annu. Rev. Control
,
46
, pp.
165
180
.
54.
Ahamad
,
S.
, and
Ratneshwer
,
2021
, “
Some Studies on Performability Analysis of Safety Critical Systems
,”
Comput. Sci. Rev.
,
39
, p.
100319
.
55.
Petrič
,
T.
,
Cevzar
,
M.
, and
Babič
,
J.
,
2017
, “
Utilizing Speed-Accuracy Trade-off Models for Human-Robot Coadaptation During Cooperative Groove Fitting Task
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birmingham, UK
,
Nov. 15–17
, pp.
107
112
.
56.
Chien
,
J. H.
,
Tiwari
,
M. M.
,
Suh
,
I. H.
,
Mukherjee
,
M.
,
Park
,
S.-H.
,
Oleynikov
,
D.
, and
Siu
,
K.-C.
,
2010
, “
Accuracy and Speed Trade-Off in Robot-Assisted Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
6
(
3
), pp.
324
329
.
57.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
ASME Trans. Am. Soc. Mech. Eng.
,
64
(
8
), pp.
759
765
.
58.
Pan
,
Y.
,
Li
,
Z.
,
Shi
,
T.
, and
Wen
,
C.
,
2024
, “
Composite Learning Variable Impedance Robot Control With Stability and Passivity Guarantees
,”
IEEE Robot. Autom. Lett.
,
9
(
1
), pp.
119
126
.
59.
Bjelonic
,
M.
,
Grandia
,
R.
,
Geilinger
,
M.
,
Harley
,
O.
,
Medeiros
,
V. S.
,
Pajovic
,
V.
,
Jelavic
,
E.
,
Coros
,
S.
, and
Hutter
,
M.
,
2022
, “
Offline Motion Libraries and Online MPC for Advanced Mobility Skills
,”
Int. J. Rob. Res.
,
41
(
9–10
), pp.
903
924
.
60.
Koptev
,
M.
,
Figueroa
,
N.
, and
Billard
,
A.
,
2024
, “
Reactive Collision-Free Motion Generation in Joint Space via Dynamical Systems and Sampling-Based MPC
,”
Int. J. Rob. Res.
,
43
(
13
), pp.
2069
2069
.
61.
Abu-Dakka
,
F. J.
,
Rozo
,
L.
, and
Caldwell
,
D. G.
,
2018
, “
Force-Based Variable Impedance Learning for Robotic Manipulation
,”
Rob. Auton. Syst.
,
109
, pp.
156
167
.
62.
Cao
,
H.
,
Chen
,
X.
,
He
,
Y.
, and
Zhao
,
X.
,
2019
, “
Dynamic Adaptive Hybrid Impedance Control for Dynamic Contact Force Tracking in Uncertain Environments
,”
IEEE Access
,
7
, pp.
83162
83174
.
You do not currently have access to this content.