Abstract

Traditional manufacturing, such as steel manufacturing, involves a series of processes to realize the final product. The properties and performance of the final product depend on the material processing history and the microstructure generated at each of the processes. Realizing target product performance requires the simultaneous design exploration of the material microstructure and processing, taking into account the multilevel interactions between the material, product, and manufacturing processes. This demands the capability to co-design, which involves sharing a ranged set of solutions through design exploration across multilevel and providing design decision support. In this paper, we present a co-design exploration framework for multilevel decision support. Using the framework, we model the interactions and couplings between the levels and facilitate simultaneous decision-based design exploration. The framework integrates the coupled compromise decision support problem construct with interpretable self-organizing maps to facilitate (i) the formulation of the multilevel decision support problems taking into account the interactions and couplings between levels, (ii) the simultaneous visualization and exploration of the multilevel design spaces, and (iii) decision-making across levels for multilevel designers. The efficacy of the framework is tested using a hot rod rolling problem focusing on the interactions between the dynamic and metadynamic phases of material recrystallization and the thermo-mechanical processing during the hot rolling process. The framework is generic and supports the co-design exploration of systems characterized by multilevel interactions, couplings, and multidisciplinary designers.

References

1.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J.
, and
Sandusky
,
J. R.
,
1998
, “
Bi-Level Integrated System Synthesis (BLISS)
,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
American Institute of Aeronautics and Astronautics
, Paper No. AIAA-98-4916.
2.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
,
2001
, “
BLISS: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
21
(
1
), pp.
1
13
.
3.
Kroo
,
I.
,
Altus
,
S.
,
Braun
,
R.
,
Gage
,
P.
, and
Sobieski
,
I.
,
1994
, “
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
,”
5th Symposium on Multidisciplinary Analysis and Optimization
,
American Institute of Aeronautics and Astronautics
, Paper No. AIAA-94-4325-CP.
4.
Wang
,
P.
,
Bai
,
Y.
,
Fu
,
C.
, and
Lin
,
C.
,
2023
, “
Lightweight Design of an Electric Bus Body Structure With Analytical Target Cascading
,”
Front. Mech. Eng.
,
18
(
1
), p.
2
.
5.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
.
6.
Arróyave
,
R.
, and
McDowell
,
D. L.
,
2019
, “
Systems Approaches to Materials Design: Past, Present, and Future
,”
Annu. Rev. Mater. Res.
,
49
(
1
), pp.
103
126
.
7.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
8.
McDowell
,
D.
,
2018
, “Microstructure-Sensitive Computational Structure-Property Relations in Materials Design,”
Computational Materials System Design
,
D.
Shin
and
J.
Saal
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1
25
.
9.
Simpson
,
T.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—Or Not
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
MAO
, Paper No. AIAA-2008-5802.
10.
Simon
,
H. A.
,
1956
, “
Rational Choice and the Structure of the Environment
,”
Psychol. Rev.
,
63
(
2
), pp.
129
138
.
11.
Allen
,
J. K.
,
Panchal
,
J.
,
Mistree
,
F.
,
Singh
,
A.
, and
Gautham
,
B.
,
2015
, “
Uncertainty Management in the Integrated Realization of Materials and Components
,”
Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015)
,
Colorado Springs, CO
,
May 31–June 4
, Vol.
35
, pp.
339
346
.
12.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H.-J.
,
Seepersad
,
C.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Butterworth-Heinemann
,
Cambridge, MA
.
13.
Mistree
,
F.
,
Smith
,
W.
,
Bras
,
B.
,
Allen
,
J.
, and
Muster
,
D.
,
1990
, “
Decision-Based Design: A Contemporary Paradigm for Ship Design
,”
Soc. Nav. Archit. Mar. Eng., Trans.
,
98
, pp.
565
597
.
14.
Mistree
,
F.
,
Allen
,
J. K.
,
Woodruff
,
G. W.
, and
Simon
,
H.
,
Position Paper Optimization in Decision-Based Design
,
Optimization in Industry
,
Palm Coast, FL
.
15.
Muster
,
D.
, and
Mistree
,
F.
,
1988
, “
The Decision Support Problem Technique in Engineering Design
,”
Int. J. Appl. Eng. Educ.
,
4
(
1
), pp.
23
33
.
16.
Simon
,
H. A.
,
1997
,
Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations
,
Free Press
,
New York
.
17.
Mistree
,
F.
,
Hughes
,
O.
, and
Bras
,
B.
,
1993
, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Prog. Astronaut. Aeronaut.
,
150
, pp.
251
251
.
18.
Adams
,
B. L.
,
Fullwood
,
D. T.
, and
Kalidindi
,
S.
,
2013
,
Microstructure Sensitive Design for Performance Optimization
,
Elsevier
,
Cambridge, MA
.
19.
Kalidindi
,
S.
,
Niezgoda
,
S.
,
Landi
,
G.
,
Vachhani
,
S.
, and
Fast
,
T.
,
2010
, “
A Novel Framework for Building Materials Knowledge Systems
,”
Comput. Mater. Contin.
,
17
(
2
), pp.
103
125
.
20.
Kalidindi
,
S.
,
Niezgoda
,
S.
, and
Salem
,
A.
,
2011
, “
Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols
,”
J. Miner. Met. Mater. Soc.
,
63
(
4
), pp.
34
41
.
21.
Ghosh
,
S.
,
Anantha Padmanabha
,
G.
,
Peng
,
C.
,
Andreoli
,
V.
,
Atkinson
,
S.
,
Pandita
,
P.
,
Vandeputte
,
T.
,
Zabaras
,
N.
, and
Wang
,
L.
,
2022
, “
Inverse Aerodynamic Design of Gas Turbine Blades Using Probabilistic Machine Learning
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021706
.
22.
Sui
,
F.
,
Guo
,
R.
,
Zhang
,
Z.
,
Gu
,
G. X.
, and
Lin
,
L.
,
2021
, “
Deep Reinforcement Learning for Digital Materials Design
,”
ACS Mater. Lett.
,
3
(
10
), pp.
1433
1439
.
23.
Kim
,
B.
,
Lee
,
S.
, and
Kim
,
J.
, “
Inverse Design of Porous Materials Using Artificial Neural Networks
,”
Sci. Adv.
,
6
(
1
), p.
eaax9324
.
24.
Chen
,
C. T.
, and
Gu
,
G. X.
,
2020
, “
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
,”
Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany)
,
7
(
5
), p.
1902607
.
25.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
npj Comput. Mater.
,
6
(
1
), p.
73
.
26.
Hou
,
L.
, and
Jiao
,
R.
,
2020
, “
Data-Informed Inverse Design by Product Usage Information: A Review, Framework and Outlook
,”
J. Intell. Manuf.
,
31
(
3
), pp.
529
552
.
27.
Flores Ituarte
,
I.
,
Panicker
,
S.
,
Nagarajan
,
H. P. N.
,
Coatanea
,
E.
, and
Rosen
,
D. W.
,
2023
, “
Optimisation-Driven Design to Explore and Exploit The Process–Structure–Property–Performance Linkages in Digital Manufacturing
,”
J. Intell. Manuf.
,
34
(
1
), pp.
219
241
.
28.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
29.
Wang
,
G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
30.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
.
31.
Kern
,
P. C.
,
Priddy
,
M. W.
,
Ellis
,
B. D.
, and
McDowell
,
D. L.
,
2017
, “
pyDEM: A Generalized Implementation of the Inductive Design Exploration Method
,”
Mater. Des.
,
134
, pp.
293
300
.
32.
Jang
,
S.
,
Choi
,
H.-J.
,
Choi
,
S.-K.
, and
Oh
,
J.-S.
,
2018
, “
Inductive Design Exploration Method With Active Learning for Complex Design Problems
,”
Appl. Sci.
,
8
(
12
), p.
2418
.
33.
Demir
,
G.
,
Gorguluarslan
,
R. M.
, and
Aradag
,
S.
,
2023
, “
Robust Shape Optimization Under Model Uncertainty of an Aircraft Wing Using Proper Orthogonal Decomposition and Inductive Design Exploration Method
,”
Struct. Multidiscipl. Optim.
,
66
(
4
), p.
93
.
34.
Nellippallil
,
A. B.
,
Rangaraj
,
V.
,
Gautham
,
B.
,
Singh
,
A.
,
Allen
,
J.
, and
Mistree
,
F.
,
2018
, “
An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products and Manufacturing Processes
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111403
.
35.
Sharma
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2021
, “
A Method for Robust Design in a Coupled Decision Environment
,”
Des. Sci.
,
7
, p.
e23
.
36.
Sharma
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2023
, “
Exploring Robust Decisions in the Design of Coupled Engineered Systems
,”
ASME J. Mech. Des.
,
145
(
12
), p.
121402
.
37.
Baby
,
M.
, and
Nellippallil
,
A. B.
,
2024
, “
An Information-Decision Framework for the Multilevel Co-Design of Products, Materials, and Manufacturing Processes
,”
Adv. Eng. Inform.
,
59
, p.
102271
.
38.
Baby
,
M.
,
Rama Sushil
,
R.
,
Ramu
,
P.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
Nellippallil
,
A. B.
,
2023
, “Robust, Co-Design Exploration of Multilevel Product, Material, and Manufacturing Process Systems,”
Integr. Mater. Manuf. Innov.
, 13, pp.
14
35
.
39.
Sushil
,
R. R.
,
Baby
,
M.
,
Sharma
,
G.
,
Nellippallil
,
A. B.
, and
Ramu
,
P.
,
2022
, “
Data Driven Integrated Design Space Exploration Using ISOM
,”
ASME Design Automation Conference
, Paper No. IDETC2022-89895.
40.
Lenard
,
J.
,
Cser
,
L.
, and
Pietrzyk
,
M.
,
1999
,
Mathematical and Physical Simulation of the Properties of Hot Rolled Products
,
Elsevier
,
New York
.
41.
Hodgson
,
P. D.
, and
Gibbs
,
R. K.
,
1992
, “
A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels
,”
ISIJ Int.
,
32
(
12
), pp.
1329
1338
.
42.
Reddy
,
R.
,
Smith
,
W.
,
Mistree
,
F.
,
Bras
,
B.
,
Chen
,
W.
,
Malhotra
,
A.
,
Badhrinath
,
K.
,
Lautenschlager
,
U.
,
Pakala
,
R.
, and
Vadde
,
S.
,
1996
,
DSIDES User Manual. Systems Realization Laboratory
,
Woodruff School of Mechanical Engineering, Georgia Institue of Technology
,
Atlanta, GA
.
43.
Thole
,
S.
, and
Ramu
,
P.
,
2020
, “
Design Space Exploration and Optimization Using Self-Organizing Maps
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1071
1088
.
44.
Kohonen
,
T.
, and
Somervuo
,
P.
,
1998
, “
Self-Organizing Maps of Symbol Strings
,”
Neurocomputing
,
21
(
1
), pp.
19
30
.
45.
Richardson
,
T.
,
Kannan
,
H.
,
Bloebaum
,
C.
, and
Winer
,
E.
,
2014
, “
Incorporating Value-Driven Design Into the Visualization of Design Spaces Using Contextual Self-Organizing Maps: A Case Study of Satellite Design
,”
15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 16–20
, p.
2728
.
46.
Nagar
,
D.
,
Pannerselvam
,
K.
, and
Ramu
,
P.
,
2022
, “
A Novel Data-Driven Visualization of n-Dimensional Feasible Region Using Interpretable Self-Organizing Maps (iSOM)
,”
Neural Networks
,
155
, pp.
398
412
.
47.
Nagar
,
D.
,
Ramu
,
P.
, and
Deb
,
K.
,
2023
, “
Visualization and Analysis of Pareto-Optimal Fronts Using Interpretable Self-Organizing Map (iSOM)
,”
Swarm Evol. Comput.
,
76
, p.
101202
.
48.
Kuziak
,
R.
,
Cheng
,
Y.-W.
,
Glowacki
,
M.
, and
Pietrzyk
,
M.
,
1997
, “
Modeling of the Microstructure and Mechanical Properties of Steels During Thermomechanical Processing
,”
NIST Techn. Note (USA)
,
1393
, p.
72
.
49.
Lee
,
Y.
,
Choi
,
S.
, and
Hodgson
,
P.
,
2002
, “
Integrated Model for Thermo-Mechanical Controlled Process in Rod (or Bar) Rolling
,”
J. Mater. Process. Technol.
,
125–126
, pp.
678
688
.
You do not currently have access to this content.