Abstract

Kinematics calibration for quadrupled robots is essential to ensuring motion accuracy and control stability. The angle of the leg joints of the quadruped robot is error-compensated to improve its position accuracy. This paper proposes a real-time high-precision kinematics calibration method for quadruped robots using machine vision and artificial neural networks to simplify the calibration process and improve calibration accuracy. The method includes two parts: identifying the markers fixed on the legs through target detection, calculating the center coordinates of the markers, and building an error model based on an artificial neural network to solve the angle error of each joint and compensate for it. A series of experiments have been carried out to verify the model’s accuracy. The experimental results show that, compared to traditional manual calibration, by adding an error correction model to the inverse kinematics neural network, the calibration efficiency can be significantly improved while the calibration accuracy is met.

References

1.
Moro
,
F. L.
,
Spröwitz
,
A.
,
Tuleu
,
A.
,
Vespignani
,
M.
,
Tsagarakis
,
N. G.
,
Ijspeert
,
A. J.
, and
Caldwell
,
D. G.
,
2013
, “
Horse-Like Walking, Trotting, and Galloping Derived From Kinematic Motion Primitives (KMPs) and Their Application to Walk/Trot Transitions in a Compliant Quadruped Robot
,”
Biol. Cybern.
,
107
(
3
), pp.
309
320
.
2.
Hooks
,
J.
,
Ahn
,
M. S.
,
Yu
,
J.
,
Zhang
,
X.
,
Zhu
,
T.
,
Chae
,
H.
, and
Hong
,
D.
,
2020
, “
Alphred: A Multi-Modal Operations Quadruped Robot for Package Delivery Applications
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5409
5416
.
3.
Aoyagi
,
S.
,
Kohama
,
A.
,
Nakata
,
Y.
,
Hayano
,
Y.
, and
Suzuki
,
M.
,
2010
, “
Improvement of Robot Accuracy by Calibrating Kinematic Model Using a Laser Tracking System-Compensation of Non-Geometric Errors Using Neural Networks and Selection of Optimal Measuring Points Using Genetic Algorithm
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
5660
5665
.
4.
Jiang
,
Z.
,
Zhou
,
W.
,
Li
,
H.
,
Mo
,
Y.
,
Ni
,
W.
, and
Huang
,
Q.
,
2017
, “
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3337
3345
.
5.
Bai
,
Y.
, and
Wang
,
D.
,
2020
, “
Improve 3D Modeless Robots Calibration Accuracy Using a Shallow Neural Network Technique
,”
2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)
,
Sorrento, Italy
,
June 24–26
, IEEE, pp.
550
555
.
6.
Xu
,
Q.
,
Nie
,
Z.
,
Xu
,
H.
,
Zhou
,
H.
,
Attar
,
H. R.
,
Li
,
N.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2022
, “
Supermeshing: a New Deep Learning Architecture for Increasing the Mesh Density of Physical Fields in Metal Forming Numerical Simulation
,”
ASME J. Appl. Mech.
,
89
(
1
), p.
011002
.
7.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2021
, “
StressGAN: A Generative Deep Learning Model for Two-Dimensional Stress Distribution Prediction
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051005
.
8.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
9.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P. W.
,
2020
, “
Learning Mesh-Based Simulation With Graph Networks
,” preprint arXiv:2010.03409.
10.
Xie
,
Y.
,
Franz
,
E.
,
Chu
,
M.
, and
Thuerey
,
N.
,
2018
, “
tempogan: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow
,”
ACM Trans. Graphics
,
37
(
4
), pp.
1
15
.
11.
Jang
,
J. H.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
,
2001
, “
Calibration of Geometric and Non-Geometric Errors of an Industrial Robot
,”
Robotica
,
19
(
3
), pp.
311
321
.
12.
Hasan
,
A. T.
,
Ismail
,
N.
,
Hamouda
,
A. M. S.
,
Aris
,
I.
,
Marhaban
,
M. H.
, and
Al-Assadi
,
H.
,
2010
, “
Artificial Neural Network-Based Kinematics Jacobian Solution for Serial Manipulator Passing Through Singular Configurations
,”
Adv. Eng. Softw.
,
41
(
2
), pp.
359
367
.
13.
Strobl
,
K. H.
, and
Hirzinger
,
G.
,
2006
, “
Optimal Hand-Eye Calibration
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, IEEE, pp.
4647
4653
.
14.
Norgaard
,
M.
,
Ravn
,
O.
,
Poulse
,
N.
, and
Hansen
,
L.
,
2001
,
Neural Networks for Modelling and Control of Dynamic Systems
.
Springer-Verlag London Ltd.
,
London, UK
.
15.
Bayramoglu
,
E.
,
Andersen
,
N. A.
,
Ravn
,
O.
, and
Poulsen
,
N. K.
,
2011
, “
Pre-Trained Neural Networks Used for Non-Linear State Estimation
,”
2011 10th International Conference on Machine Learning and Applications and Workshops
,
Honolulu, HI
,
Dec. 18–21
, Vol.
1
, IEEE, pp.
304
310
..
16.
Nguyen
,
H.-N.
,
Zhou
,
J.
, and
Kang
,
H.-J.
,
2015
, “
A Calibration Method for Enhancing Robot Accuracy Through Integration of an Extended Kalman Filter Algorithm and an Artificial Neural Network
,”
Neurocomputing
,
151
(
3
), pp.
996
1005
.
17.
Wang
,
Z.
,
Chen
,
Z.
,
Wang
,
Y.
,
Mao
,
C.
, and
Hang
,
Q.
,
2019
, “
A Robot Calibration Method Based on Joint Angle Division and an Artificial Neural Network
,”
Math. Problems Eng.
,
2019
(
5
), pp.
1
12
.
18.
Cao
,
C.-T.
,
Do
,
V.-P.
, and
Lee
,
B.-R.
,
2019
, “
A Novel Indirect Calibration Approach for Robot Positioning Error Compensation Based on Neural Network and Hand-Eye Vision
,”
Appl. Sci.
,
9
(
9
), p.
1940
.
19.
Wang
,
D.
,
Bai
,
Y.
, and
Zhao
,
J.
,
2012
, “
Robot Manipulator Calibration Using Neural Network and a Camera-Based Measurement System
,”
Trans. Inst. Meas. Control
,
34
(
1
), pp.
105
121
.
20.
Bay
,
H.
,
Tuytelaars
,
T.
, and
Gool
,
L. V.
,
2008
, “
Speeded-Up Robust Features (SURF)
,”
Comput. Vis. Image Underst.
,
110
(
3
), pp.
346
359
.
21.
Wu
,
H.
,
Zou
,
K.
,
Zhang
,
T.
,
Borst
,
A.
, and
Kühnlenz
,
K.
,
2012
, “
Insect-Inspired High-Speed Motion Vision System for Robot Control
,”
Biol. Cybernet.
,
106
(
8
), pp.
453
463
.
22.
Smisek
,
J.
,
Jancosek
,
M.
, and
Pajdla
,
T.
,
2011
, “
3d With Kinect
,”
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)
,
Barcelona, Spain
,
Nov. 6–13
, Springer, pp.
3
25
.
23.
Almusawi
,
A. R.
,
Dülger
,
L. C.
, and
Kapucu
,
S.
,
2016
, “
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (denso Vp6242)
,”
Comput. Intell. Neurosci.
,
2016
, p.
5720163
.
24.
Ogawa
,
T.
, and
Kanada
,
H.
,
2010
, “
Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion
,”
J. Rob.
,
2010
, p.
870923
.
25.
KöKer
,
R.
,
2013
, “
A Genetic Algorithm Approach to a Neural-Network-Based Inverse Kinematics Solution of Robotic Manipulators Based on Error Minimization
,”
Inf. Sci.
,
222
, pp.
528
543
.
26.
Daya
,
B.
,
Khawandi
,
S.
, and
Akoum
,
M.
,
2010
, “
Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics
,”
J. Softw. Eng. Appl.
,
3
(
3
), p.
230
.
27.
Bo
,
L.
,
Wei
,
T.
,
Zhang
,
C.
,
Fangfang
,
H.
,
Guangyu
,
C.
, and
Yufei
,
L.
,
2022
, “
Positioning Error Compensation of an Industrial Robot Using Neural Networks and Experimental Study
,”
Chin. J. Aeronautics
,
35
(
2
), pp.
346
360
.
28.
Zhang
,
D.
,
Kong
,
L.
,
Zhang
,
S.
,
Li
,
Q.
, and
Fu
,
Q.
,
2020
, “
Neural Networks-Based Fixed-Time Control for a Robot With Uncertainties and Input Deadzone
,”
Neurocomputing
,
390
, pp.
139
147
.
29.
Lee
,
C. G.
,
1982
, “
Robot Arm Kinematics, Dynamics, and Control
,”
Computer
,
15
(
12
), pp.
62
80
.
30.
Featherstone
,
R.
,
1983
, “
Position and Velocity Transformations Between Robot End-Effector Coordinates and Joint Angles
,”
Int. J. Rob. Res.
,
2
(
2
), pp.
35
45
.
31.
Liu
,
Y.
,
Wang
,
D.
,
Sun
,
J.
,
Chang
,
L.
,
Ma
,
C.
,
Ge
,
Y.
, and
Gao
,
L.
,
2015
, “
Geometric Approach for Inverse Kinematics Analysis of 6-dof Serial Robot
,”
2015 IEEE International Conference on Information and Automation
,
Lijiang, China
,
Aug. 8–10
, IEEE, pp.
852
855
.
32.
Karlik
,
B.
, and
Aydin
,
S.
,
2000
, “
An Improved Approach to the Solution of Inverse Kinematics Problems for Robot Manipulators
,”
Eng. Appl. Artif. Intell.
,
13
(
2
), pp.
159
164
.
33.
Köker
,
R.
,
2005
, “
Reliability-Based Approach to the Inverse Kinematics Solution of Robots Using Elman’s Networks
,”
Eng. Appl. Artif. Intell.
,
18
(
6
), pp.
685
693
.
34.
Driscoll
,
J. A.
,
2000
, “
Comparison of Neural Network Architectures for the Modeling of Robot Inverse Kinematics
,”
Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No. 00CH37105)
,
Nashville, TN
,
Apr. 9
, IEEE, pp.
44
51
.
You do not currently have access to this content.