Abstract

Since every structure in the human body can vary, customization is important to choose the most appropriate medical option according to the patient. Total knee arthroplasty (TKA) is a surgical procedure for the knee replacement that has a high rate of patient’s dissatisfaction. Indeed, conventional prostheses are based on anthropometric data that accommodate common knees. However, mismatch can occur due to anatomical variations among the individuals. Thanks to the advances in imaging techniques and 3D modeling, it is possible to create customized knee implants starting from medical images. In this context, the present research proposes a methodology to design a customized knee implant taking into account clinical (e.g., prosthesis alignment and surgical cuts) and technical parameters (e.g., materials) that have a direct impact on TKA performance and patient’s satisfaction. Changing these parameters, different scenarios have been modeled and simulated to understand the most suitable combination. Finite element analysis (FEA) has been employed to simulate and compare the proposed customized models, changing the different clinical and technical parameters. Stress induced by different combinations of the parameters has been evaluated to choose the optimal solution among the eight proposed scenarios. The optimum is reached with a physiological alignment, with six femoral facets and the ultra-high molecular weight polyethylene (UHMWPE) tibial insert. The implant design maintains the natural joint line and allows preserving more bone. The material is the parameter that mostly influences the stress distribution.

References

1.
Bertol
,
L.
,
Silva
,
F.
, and
Kindlein
,
W.
,
2009
, “
Design and Health Care: A Study of Virtual Design and Direct Metal Laser Sintering of Titanium Alloy for the Production of Customized Facial Implants
,”
Aust. J. Med. Sci.
,
1
(
11
), pp.
136
141
.
2.
Hettich
,
G.
,
Weiß
,
J. B.
,
Wünsch
,
B.
, and
Grupp
,
T. M.
,
2022
, “
Finite Element Analysis for Pre-Clinical Testing of Custom-Made Knee Implants for Complex Reconstruction Surgery
,”
Appl. Sci.
,
12
(
9
), p.
4787
.
3.
Bertolini
,
M.
,
Rossoni
,
M.
, and
Colombo
,
G.
,
2021
, “
Operative Workflow From CT to 3D Printing of the Heart: Opportunities and Challenges
,”
Bioengineering
,
8
(
10
), p.
130
.
4.
Yang
,
Y.
,
Yuan
,
T.
,
Huysmans
,
T.
,
Elkhuizen
,
W. S.
,
Tajdari
,
F.
, and
Song
,
Y.
,
2021
, “
Posture-Invariant Three Dimensional Human Hand Statistical Shape Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031006
.
5.
Comotti
,
C.
,
Regazzoni
,
D.
,
Rizzi
,
C.
, and
Vitali
,
A.
,
2017
, “
Additive Manufacturing to Advance Functional Design: An Application in the Medical Field
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031006
.
6.
Gjonbalaj
,
M.
,
Georgiev
,
G.
, and
Bjelica
,
D.
,,
2017
, “
Differences in Anthropometric Characteristics, Somatotype Components, and Functional Abilities Among Young Elite Kosovo Soccer Players Based on Team Position
,”
Int. J. Morphol.
,
36
(
1
), pp.
41
47
.
7.
Smith
,
H. F.
,
2021
, “
Anatomical Variation and Clinical Diagnosis
,”
Diagnostics
,
11
(
2
), p.
247
.
8.
Saadat
,
E.
,
Bolbos
,
R. I.
, and
Ries
,
M. D.
,
2010
, “Clinical Presentation and Natural History of Osteoarthritis,”,
Advances in MRI of the Knee for Osteoarthritis
,
S.
Majumdar
, ed.,
World Scientific Publishing Company
,
San Francisco, CA
, pp.
27
67
.
9.
Meier
,
M.
,
Zingde
,
S.
,
Steinert
,
A.
,
Kurtz
,
W.
,
Koeck
,
F.
, and
Beckmann
,
J.
,
2019
, “
What Is the Possible Impact of High Variability of Distal Femoral Geometry on TKA? A CT Data Analysis of 24,042 Knees
,”
Clin. Orthop. Relat. Res.
,
477
(
3
), pp.
561
570
.
10.
Lee
,
J. A.
,
Koh
,
Y. G.
, and
Kang
,
K. T.
,
2020
, “
Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review
,”
J. Clin. Med.
,
9
(
5
), p.
1559
.
11.
Sappey-Marinier
,
E.
,
Tibesku
,
C.
,
Selmi
,
T. A. S.
, and
Bonnin
,
M.
,
2020
, “Custom Total Knee Arthroplasty,”
Personalized Hip and Knee Joint Replacement
,
C.
Rivière
, and
Pascal-André
Vendittoli
, eds.,
Springer
,
New York
, pp.
255
264
.
12.
Sarpong
,
N. O.
,
Chen
,
D.
, and
Cooper
,
H. J.
,
2022
, “Custom/Patient-Specific Total Knee Arthroplasty,”
Essentials of Cemented Knee Arthroplasty
,
E.
Hansen
and
K.
Kühn
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
377
384
.
13.
Ha
,
C. W.
, and
Na
,
S. E.
,
2012
, “
The Correctness of Fit of Current Total Knee Prostheses Compared With Intra-Operative Anthropometric Measurements in Korean Knees
,”
J. Bone Jt. Surg.
,
94
(
7
), pp.
638
641
.
14.
Neginhal
,
V.
,
Kurtz
,
W.
, and
Schroeder
,
L.
,
2020
, “
Patient Satisfaction, Functional Outcomes, and Survivorship in Patients With a Customized Posterior-Stabilized Total Knee Replacement
,”
JBJS Rev.
,
8
(
7
), pp.
e19.00104
e19.00104
.
15.
Batailler
,
C.
,
Swan
,
J.
,
Sappey Marinier
,
E.
,
Servien
,
E.
, and
Lustig
,
S.
,
2020
, “
New Technologies in Knee Arthroplasty: Current Concepts
,”
J. Clin. Med.
,
10
(
1
), p.
47
.
16.
Namin
,
A. T.
,
Jalali
,
M. S.
,
Vahdat
,
V.
,
Bedair
,
H. S.
,
O'Connor
,
M. I.
,
Kamarthi
,
S.
, and
Isaacs
,
J. A.
,
2019
, “
Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants
,”
Value Health
,
22
(
4
), pp.
423
430
.
17.
Mihalko
,
W. M.
,
2019
, “Additive Manufacturing of Arthroplasty Implants,”
3D Printing in Orthopaedic Surgery
,
M
Dipaola
, and
FM
Wodajo
, eds.,
Elsevier
,
New York
, pp.
49
53
.
18.
Koh
,
Y. G.
,
Lee
,
J. A.
,
Chung
,
P. K.
, and
Kang
,
K. T.
,
2019
, “
Computational Analysis of Customized Cruciate Retaining Total Knee Arthroplasty Restoration of Native Knee Joint Biomechanics
,”
Artif. Organs
,
43
(
5
), pp.
504
514
.
19.
Zeller
,
I. M.
,
Sharma
,
A.
,
Kurtz
,
W. B.
,
Anderle
,
M. R.
, and
Komistek
,
R. D.
,
2017
, “
Custom Versus Patient-Sized Cruciate-Retaining Total Knee Arthroplasty: An in Vivo Kinematics Study Using Mobile Fluoroscopy
,”
J. Arthroplasty
,
32
(
4
), pp.
1344
1350
.
20.
Mou
,
Z.
,
Dong
,
W.
,
Zhang
,
Z.
,
Wang
,
A.
,
Hu
,
G.
,
Wang
,
B.
, and
Dong
,
Y.
,
2018
, “
Optimization of Parameters for Femoral Component Implantation During TKA Using Finite Element Analysis and Orthogonal Array Testing
,”
J. Orthop. Surg. Res.
,
13
(
1
), pp.
1
12
.
21.
Moewis
,
P.
,
Checa
,
S.
,
Kutzner
,
I.
,
Hommel
,
H.
, and
Duda
,
G. N.
,
2018
, “
Physiological Joint Line Total Knee Arthroplasty Designs Are Especially Sensitive to Rotational Placement—A Finite Element Analysis
,”
PLoS One
,
13
(
2
), p.
e0192225
.
22.
Nedopil
,
A. J.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “Kinematically Aligned Total Knee Arthroplasty Using Calipered Measurements, Manual Instruments, and Verification Checks,”
Personalized Hip and Knee Joint Replacement
,
C
Rivière
, and
PA
Vendittoli
, eds.,
Springer
,
Cham
, pp.
279
300
.
23.
Yeo
,
J. H.
,
Seon
,
J. K.
,
Lee
,
D. H.
, and
Song
,
E. K.
,
2019
, “
No Difference in Outcomes and Gait Analysis Between Mechanical and Kinematic Knee Alignment Methods Using Robotic Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
27
(
4
), pp.
1142
1147
.
24.
Dossett
,
H. G.
,
Estrada
,
N. A.
,
Swartz
,
G. J.
,
LeFevre
,
G. W.
, and
Kwasman
,
B. G.
,
2014
, “
A Randomised Controlled Trial of Kinematically and Mechanically Aligned Total Knee Replacements: Two-Year Clinical Results
,”
Bone Jt. J.
,
96
(
7
), pp.
907
913
.
25.
Niki
,
Y.
,
Nagura
,
T.
,
Nagai
,
K.
,
Kobayashi
,
S.
, and
Harato
,
K.
,
2018
, “
Kinematically Aligned Total Knee Arthroplasty Reduces Knee Adduction Moment More Than Mechanically Aligned Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
26
(
6
), pp.
1629
1635
.
26.
Blakeney
,
W.
,
Clément
,
J.
,
Desmeules
,
F.
,
Hagemeister
,
N.
,
Rivière
,
C.
, and
Vendittoli
,
P. A.
,
2019
, “
Kinematic Alignment in Total Knee Arthroplasty Better Reproduces Normal Gait Than Mechanical Alignment
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
27
(
5
), pp.
1410
1417
.
27.
Chen
,
Z.
,
Wang
,
L.
,
Liu
,
Y.
,
He
,
J.
,
Lian
,
Q.
,
Li
,
D.
, and
Jin
,
Z.
,
2015
, “
Effect of Component mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling Under a Simulated Walking Gait
,”
J. Orthop. Res.
,
33
(
9
), pp.
1287
1296
.
28.
Kang
,
K. T.
,
Koh
,
Y. G.
,
Nam
,
J. H.
,
Kwon
,
S. K.
, and
Park
,
K. K.
,
2020
, “
Kinematic Alignment in Cruciate Retaining Implants Improves the Biomechanical Function in Total Knee Arthroplasty During Gait and Deep Knee Bend
,”
J. Knee Surg.
,
33
(
3
), pp.
284
293
.
29.
Kurtz
,
W. B.
,
Slamin
,
J. E.
, and
Doody
,
S. W.
,
2016
, “
Bone Preservation in a Novel Patient Specific Total Knee Replacement
,”
Reconstr. Rev.
,
6
(
1
).
30.
Brockett
,
C. L.
,
Carbone
,
S.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2017
, “
PEEK and CFR-PEEK as Alternative Bearing Materials to UHMWPE in a Fixed Bearing Total Knee Replacement: An Experimental Wear Study
,”
Wear
,
374–375
, pp.
86
91
.
31.
Koh
,
Y. G.
,
Lee
,
J. A.
, and
Kang
,
K. T.
,
2019
, “
Prediction of Wear on Tibial Inserts Made of UHMWPE, PEEK, and CFR-PEEK in Total Knee Arthroplasty Using Finite-Element Analysis
,”
Lubricants
,
7
(
4
), p.
30
.
32.
Kang
,
K. T.
,
Son
,
J.
,
Kwon
,
S. K.
,
Kwon
,
O. R.
,
Park
,
J. H.
, and
Koh
,
Y. G.
,
2018
, “
Finite Element Analysis for the Biomechanical Effect of Tibial Insert Materials in Total Knee Arthroplasty
,”
Compos. Struct.
,
201
, pp.
141
150
.
33.
Bhandarkar
,
S.
, and
Dhatrak
,
P.
,
2022
, “
Optimization of a Knee Implant With Different Biomaterials Using Finite Element Analysis
,”
Mater. Today: Proc.
,
59
, Part 1, pp.
459
467
.
34.
Koh
,
Y. G.
,
Jung
,
K. H.
,
Hong
,
H. T.
,
Kim
,
K. M.
, and
Kang
,
K. T.
,
2019
, “
Optimal Design of Patient-Specific Total Knee Arthroplasty for Improvement in Wear Performance
,”
J. Clin. Med.
,
8
(
11
), p.
2023
.
35.
Tumulu
,
S.
, and
Sarkar
,
D.
,
2018
, “
Computer-Aided Design, Finite Element Analysis and Material-Model Optimisation of Knee Prosthesis
,”
J. Aust. Ceram. Soc.
,
54
, pp.
429
438
.
36.
Anter
,
A. M.
, and
Hassenian
,
A. E.
,
2018
, “
Computational Intelligence Optimization Approach Based on Particle Swarm Optimizer and Neutrosophic set for Abdominal CT Liver Tumor Segmentation
,”
J. Comput. Sci.
,
25
, pp.
376
387
.
37.
Zhang
,
J. Q.
,
Sullivan
,
J. M.
,
Ghadyani
,
H.
, and
Meyer
,
D. M.
,
2005
, “
MRI Guided 3D Mesh Generation and Registration for Biological Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
283
290
.
38.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J. C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
, et al
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.
39.
Ghidotti
,
A.
,
Vitali
,
A.
,
Regazzoni
,
D.
, and
Rizzi
,
C.
,
2022
, “
An Investigation of Innovative 3D Modelling Procedures for Patient-Specific Total Knee Arthroplasty
,”
Comput.-Aided Des. Appl.
,
19
(
2
), pp.
306
319
.
40.
Devaraj
,
A. K.
,
Acharya
,
K. K. V.
, and
Adhikari
,
R.
,
2020
, “
Comparison of Biomechanical Parameters Between Medial and Lateral Compartments of Human Knee Joints
,”
Open Biomed. Eng. J.
,
14
(
1
), pp.
74
86
.
41.
Arab
,
A. Z. E. A.
,
Merdji
,
A.
,
Benaissa
,
A.
,
Roy
,
S.
,
Bouiadjra
,
B. A. B.
,
Layadi
,
K.
, and
Mukdadi
,
O. M.
,
2020
, “
Finite-Element Analysis of a Lateral Femoro-Tibial Impact on the Total Knee Arthroplasty
,”
Comput. Methods Programs Biomed.
,
192
, p.
105446
.
42.
Loi
,
I.
,
Stanev
,
D.
, and
Moustakas
,
K.
,
2021
, “
Total Knee Replacement: Subject-Specific Modeling, Finite Element Analysis, and Evaluation of Dynamic Activities
,”
Front. Bioeng. Biotechnol.
,
9
, p.
196
.
43.
Colombo
,
G.
,
Facoetti
,
G.
,
Morotti
,
R.
, and
Rizzi
,
C.
,
2011
, “
Physically Based Modelling and Simulation to Innovate Socket Design
,”
Comput.-Aided Des. Appl.
,
8
(
4
), pp.
617
631
.
44.
Furini
,
F.
,
Rossoni
,
M.
, and
Colombo
,
G.
,
2016
, “
Knowledge Based Engineering and Ontology Engineering Approaches for Product Development: Methods and Tools for Design Automation in Industrial Engineering
,”
ASME International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
.
45.
Bertolini
,
M.
,
Rossoni
,
M.
, and
Colombo
,
G.
,
2022
, “
Additive Manufacturing of a Compliant Multimaterial Heart Model
,”
Comput.-Aided Des. Appl.
,
19
(
6
), pp.
1162
1170
.
46.
Leung
,
Y.
,
Kwok
,
T.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
47.
Tack
,
P.
,
Victor
,
J.
,
Gemmel
,
P.
, and
Annemans
,
L.
,
2016
, “
3D-Printing Techniques in a Medical Setting: A Systematic Literature Review
,”
BioMed. Eng. OnLine
,
15
(
1
), p.
115
.
48.
Murr
,
L. E.
,
2020
, “
Metallurgy Principles Applied to Powder bed Fusion 3D Printing/Additive Manufacturing of Personalized and Optimized Metal and Alloy Biomedical Implants: An Overview
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
1087
1103
.
49.
Wixted
,
C. M.
,
Peterson
,
J. R.
,
Kadakia
,
R. J.
, and
Adams
,
S. B.
,
2021
, “
Three-Dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments
,”
J. Am. Acad. Orthop. Surg. Glob. Res. Rev.
,
5
(
4
), pp.
e20.00230
11
.
You do not currently have access to this content.