Abstract

Recently, the number and types of measurement devices that collect data that are used to monitor laser-based powder bed fusion of metals processes and inspect additive manufacturing metal parts have increased rapidly. Each measurement device generates data in a unique coordinate system and in a unique format. Data alignment is the process of spatially aligning different datasets to a single coordinate system. It is part of a broader process called “data registration.” This paper provides a data registration procedure and includes an example of aligning data to a single, reference, coordinate system. Such a reference coordinate system is needed for downstream applications, including data analytic, artificial intelligence, and part qualification.

References

1.
Frost & Sullivan’s Global 360 deg Research Team
,
2016
,
Additive Manufacturing Market, Forecast to 2025
,
MB74-10, Frost & Sullivan
,
Mountain View, CA
.
2.
Kim
,
F.
, and
Moylan
,
S.
,
2018
,
Literature Review of Metal Additive Manufacturing Defects
, Advanced Manufacturing Series, NIST AMS—100-16,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
3.
Mani
,
M.
,
Lane
,
B.
,
Donmez
,
A.
,
Feng
,
S.
, and
Moylan
,
S.
,
2017
, “
A Review on Measurement Science Needs for Real-Time Control of Additive Manufacturing Metal Powder Bed Fusion Processes
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1400
1418
.
4.
Razvi
,
S.
,
Feng
,
S.
,
Lee
,
Y.-T.
, and
Witherell
,
P.
,
2019
, “
A Review of Machine Learning Applications in Additive Manufacturing
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug.
, Paper No. IDETC/CIE2019.
5.
ISO/ASTM 52911-1:2019
,
2019
,
Additive Manufacturing—Design—Part 1: Laser-Based Powder Bed Fusion of Metals
,
International Organisation for Standardization
,
Geneva, Switzerland
.
6.
ISO/ASTM 52900:2021
,
Additive Manufacturing—General Principles—Fundamentals and Vocabulary
, International Organisation for Standardization, Geneva, Switzerland.
7.
King
,
W. E.
,
Anderson
,
A. T.
, and
Ferencz
,
R.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
),
041304
.
8.
Grasso
,
M.
, and
Colosimo
,
B.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
),
044005
.
9.
Dagel
,
D.
,
Grossetete
,
G.
,
Maccallum
,
D.
, and
Korey
,
P.
,
2016
, “
Four-Color Imaging Pyrometer for Mapping Temperatures of Laser-Based Metal Processes
,”
Proceedings of the SPIE 9861, Thermosense: Thermal Infrared Applications XXXVIII
, Vol. 986103,
Baltimore, MD
,
May 11
.
10.
Manolakis
,
D.
,
2016
,
Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
11.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC
,
Canada, Aug. 22–26
, pp.
640
647
.
12.
Lu
,
Y.
,
Yang
,
Z.
,
Kim
,
J.
,
Cho
,
H.
, and
Ho
,
Y.
,
2020
, “
Camera-Based Coaxial Melt Pool Monitoring Data Registration for Laser Powder Bed Fusion Additive Manufacturing
,”
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Expo
,
Nov.
, Paper No. IMECE2020-23180.
13.
Feng
,
S.
,
Lu
,
Y.
, and
Jones
,
A.
,
2020
, “
Meta-Data for In-Situ Monitoring of Laser Powder Bed Fusion Processes
,”
Proceedings of ASME 2020 Manufacturing Science and Engineering Conference
, Paper Number: MSCE2020-8344.
14.
Lane
,
B.
, and
Yeung
,
H.
,
2019
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): “Three-Dimensional Scan Strategies”
,”
J. Res. Natl. Inst. Stand. Technol.
,
124
: 124033.
15.
Petrich
,
J.
,
Gobert
,
C.
,
Phoha
,
S.
,
Nassar
,
A.
, and
Reutzel
,
E.
,
2017
, “
Machine Learning for Defect Detection for PBFAM Using High Resolution Layerwise Imaging Coupled With Post-Build CT Scans
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Aug. 7–9
, pp.
1363
1381
.
16.
Caelers
,
M.
,
2017
, “
Study of In-Situ Monitoring Methods to Create a Robust SLM Process
,”
Thesis
,
KTH Royal Institute of Technology
,
Stockholm
.
17.
Everton
,
S.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R.
, and
Clare
,
A.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
J. Mater. Des.
,
95
, pp.
431
445
.
18.
Bartlett
,
J. L.
,
Heim
,
F. M.
,
Murty
,
Y. V.
, and
Li
,
X.
,
2018
, “
In Situ Defect Detection in Selective Laser Melting Via Full-Field Infrared Thermography
,”
J. Addit. Manuf.
,
24
, pp.
595
605
.
19.
Foster
,
B.
,
Reutzel
,
E.
,
Nassar
,
A.
,
Hall
,
B.
, and
Dickman
,
C.
,
2015
, “
Optical, Layerwise Monitoring of Powder Bed Fusion
,”
Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Aug. 8–10
, pp.
295
307
.
20.
Reutzel
,
E.
, and
Nassar
,
A.
,
2015
, “
A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directed-Energy, Metal-Based Additive Manufacturing
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
159
167
.
21.
Hirsch
,
M.
,
Patel
,
R.
,
Li
,
W.
,
Guan
,
G.
,
Leach
,
R.
,
Sharples
,
S.
, and
Clare
,
A.
,
2017
, “
Assessing the Capability of In-Situ Nondestructive Analysis During Layer Based Additive Manufacture
,”
J. Addit. Manuf.
,
13
, pp.
135
142
.
22.
ISO 841:2001
,
2001
,
Industrial Automation Systems and Integration—Numerical Control of Machines—Coordinate System and Motion Nomenclature
,
International Organisation for Standardization
,
Geneva
.
23.
ISO/ASTM 52921-13
,
2019
,
Standard Terminology for Additive Manufacturing—Coordinate Systems and Test Methodologies
,
International Organisation for Standardization
,
Geneva
.
24.
Yeung
,
H.
,
Neira
,
J.
,
Lane
,
B.
,
Fox
,
J.
, and
Lopez
,
F.
,
2016
, “
Laser Path Planning and Power Control Strategies for Powder Bed Fusion Systems
,”
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
May 4
, pp.
113
127
.
25.
ANSI/ASME Y14.5
,
2009
, “
Geometric Dimensioning and Tolerancing
.”
26.
Li
,
Y.
,
2008
, “
Beam Deflection and Scanning by Two-Mirror and Two-Axis Systems of Different Architectures: A Unified Approach
,”
Appl. Opt.
,
47
(
32
), pp.
5976
5985
.
27.
Yang
,
P.
,
Lo
,
Y.
, and
Chang
,
Y.
,
2016
, “
Laser Galvanometric Scanning System for Improved Average Power Uniformity and Larger Scanning Area
,”
Appl. Opt.
,
55
(
19
), pp.
5001
5007
.
You do not currently have access to this content.