Abstract

Aiming at the problem of smoothness of the B-spline curve interpolation, an improved parameterized interpolation method based on modified chord length is proposed. We construct a series of interpolation arcs using the relationship between the chord length and chord angle of given data points and then calculate the global knot parameters by replacing the chord length with the arc length. In addition, we propose curve smoothness index based on the relationship between the radius of curvature and the cumulative curve length and compare it with other classical methods to construct cubic B-spline curves in the tests; at the same time, the deviation error is used to evaluate the swing of the curve. Furthermore, two sets of point cloud data are used to test the surface interpolation for different parameterization methods, and the Gauss curvature map is used to evaluate the smoothness of interpolated surfaces. As a result, the proposed method performs better than other methods; the constructed curves and surfaces maintain a good performance.

References

1.
Zhang
,
Y.
,
Cao
,
J.
,
Chen
,
Z.
,
Li
,
X.
, and
Zeng
,
X.-M.
,
2016
, “
B-Spline Surface Fitting With Knot Position Optimization
,”
Comput. Graph.
,
58
(
SMI 2016
), pp.
73
83
.
2.
Dube
,
M.
, and
Sharma
,
R.
,
2011
, “
Quadratic NUAT B-Spline Curves With Multiple Sharp Parameters
,”
Int. J. Mach. Intell.
,
3
(
1
), pp.
18
24
.
3.
Höllig
,
K.
,
2000
, “
Stability of the B-Spline Basis Via Knot Insertion
,”
Comput. Aided Geom. Des.
,
17
(
5
), pp.
447
450
.
4.
Aguilar
,
E.
,
Elizalde
,
H.
,
Cárdenas
,
D.
,
Probst
,
O.
,
Marzocca
,
P.
, and
Ramirez-Mendoza
,
R. A.
,
2018
, “
An Adaptive Curvature-Guided Approach for the Knot-Placement Problem in Fitted Splines
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041013
.
5.
Li
,
D.
,
Zhang
,
W.
,
Zhou
,
W.
,
Shang
,
T.
, and
Fleischer
,
J.
,
2018
, “
Dual NURBS Path Smoothing for 5-Axis Linear Path of Flank Milling
,”
Int. J. Precis. Eng. Manuf.
,
19
(
12
), pp.
1811
1820
.
6.
Makhlouf
,
A. B.
,
Louhichi
,
B.
,
Mahjoub
,
M. A.
, and
Deneux
,
D.
,
2019
, “
Reconstruction of a CAD Model From the Deformed Mesh Using B-Spline Surfaces
,”
Int. J. Comput. Integr. Manuf.
,
32
(
7
), pp.
669
681
.
7.
Mittal
,
R. C.
,
Kumar
,
S.
, and
Jiwari
,
R.
,
2021
, “
A Cubic B-Spline Quasi-Interpolation Algorithm to Capture the Pattern Formation of Coupled Reaction-Diffusion Models
,”
Eng. Comput.
, pp.
1
17
.
8.
Liu
,
X.
,
2015
, “
Filling N-Sided Holes With Trimmed B-Spline Surfaces Based on Energy-Minimization Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011001
.
9.
Yuan
,
Y.
, and
Zhou
,
S.
,
2012
, “
Sequential B-Spline Surface Construction Using Multiresolution Data Clouds
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
2
), p.
021008
.
10.
Ozturk
,
S.
,
Balta
,
C.
, and
Kuncan
,
M.
,
2017
, “
Comparison of Parameterization Methods Used for B-Spline Curve Interpolation
,”
Eur. J. Technol.
,
7
(
1
), pp.
21
32
.
11.
Park
,
H.
,
2001
, “
Choosing Nodes and Knots in Closed B-Spline Curve Interpolation to Point Data
,”
Comput. Aided Des.
,
33
(
13
), pp.
967
974
.
12.
Lim
,
C.-G.
,
1999
, “
A Universal Parametrization in B-Spline Curve and Surface Interpolation
,”
Comput. Aided Geom. Des.
,
16
(
5
), pp.
407
422
.
13.
Lim
,
C.-G.
,
2002
, “
Universal Parametrization in Constructing Smoothly-Connected B-Spline Surfaces
,”
Comput. Aided Geom. Des.
,
19
(
6
), pp.
465
478
.
14.
Haron
,
H.
,
Rehman
,
A.
,
Adi
,
D. I. S.
,
Lim
,
S. P.
, and
Saba
,
T.
,
2012
, “
Parameterization Method on B-Spline Curve
,”
Math. Probl. Eng.
,
2012
, pp.
371
392
.
15.
Fang
,
J. J.
, and
Hung
,
C. L.
,
2013
, “
An Improved Parameterization Method for B-Spline Curve and Surface Interpolation
,”
Comput. Aided Des.
,
45
(
6
), pp.
1005
1028
.
16.
Zhang
,
C.
,
Wang
,
W.
,
Wang
,
J.
, and
Li
,
X.
,
2013
, “
Local Computation of Curve Interpolation Knots With Quadratic Precision
,”
Comput. Aided Des.
,
45
(
4
), pp.
853
859
.
17.
Capulin
,
C. H. G.
,
Cuevas
,
F. J.
,
Caballero
,
G. T.
, and
Gonzalez
,
H. R.
,
2014
, “
Hierarchical Genetic Algorithm for B-Spline Surface Approximation of Smooth Explicit Data
,”
Math. Probl. Eng.
,
2014
(
1
), pp.
1
11
.
18.
Long
,
M.
, and
Fenghua
,
G.
,
2014
, “
A Parameterization Method From Conic Spline Interpolation
,”
Comput. Aided Draw. Des. Man.
,
24
(
2
), pp.
30
34
.
19.
Ivo
,
M. K.
,
Damir
,
V.
, and
Milan
,
Ć.
,
2016
, “
Efficient Shape Parameterization Method for Multidisciplinary Global Optimization and Application to Integrated Ship Hull Shape Optimization Workflow
,”
Comput. Aided Des.
,
80
, pp.
61
75
.
20.
Zheng
,
X.
,
Lei
,
N.
,
Yu
,
X.
,
Chen
,
W.
,
Song
,
M.
, and
Gu
,
X.
,
2016
, “
A Balanced Surface Parameterization Method and Its Application to Spline Fitting
,”
ICDH
,
Guangzhou, China
,
Dec. 2–4
, pp.
272
277
.
21.
Min
,
K.
,
Sun
,
Y.
,
Lee
,
C.
,
Hu
,
P.
, and
He
,
S.
,
2019
, “
An Improved B-Spline Fitting Method With Arc-Length Parameterization, G2-Continuous Blending, and Quality Refinement
,”
Int. J. Precis. Eng. Manuf.
,
20
(
11
), pp.
1939
1955
.
22.
Balta
,
C.
,
Öztürk
,
S. T.
,
Kuncan
,
M.
, and
Kandilli
,
I.
,
2020
, “
Dynamic Centripetal Parameterization Method for B-Spline Curve Interpolation
,”
IEEE Access
,
8
, pp.
589
598
.
23.
de Boor
,
C.
,
1972
, “
On Calculating With B-Splines
,”
J. Approx. Theory
,
6
(
1
), pp.
50
62
.
24.
Shi
,
F.
,
2013
,
Computer Aided Geometric Design and Nonuniform Rational B Spline
,
Higher Education Press
,
Beijing
.
25.
Apprich
,
C.
,
Dieterich
,
A.
,
Höllig
,
K.
, and
Yazdani
,
E. N.
,
2017
, “
Cubic Spline Approximation of a Circle With Maximal Smoothness and Accuracy
,”
Comput. Aided Geom. Des.
,
56
(
1
), pp.
1
3
.
26.
Li
,
J.
,
Wu
,
F.
,
Gong
,
X.
,
Du
,
J.
, and
Xing
,
R.
,
2018
, “
Depth Contour Smoothing Based on the Fitting of Multi-Segment Bezier Curves
,”
Mar. Geod.
,
41
(
4
), pp.
382
404
.
27.
Rouhani
,
M.
, and
Sappa
,
A. D.
,
2011
, “
Implicit B-Spline Fitting Using the 3L Algorithm
,”
IEEE ICIP
,
Brussels, Belgium
,
Sept. 11–14
, pp.
893
896
.
28.
Di Angelo
,
L.
,
Di Stefano
,
P.
, and
Giaccari
,
L.
,
2011
, “
A New Mesh-Growing Algorithm for Fast Surface Reconstruction
,”
Comput. Aided Des.
,
43
(
6
), pp.
639
650
.
You do not currently have access to this content.