Abstract

The objective of this study is to investigate the value of an ecologically inspired architectural metric called the degree of system order in the system of systems (SoS) architecting process. Two highly desirable SoS attributes are the ability to withstand and recover from disruptions (resilience) and affordability. In practice, more resilient SoS architectures are less affordable, and it is essential to balance the trade-offs between the two attributes. Ecological research analyzing long-surviving ecosystems (nature’s resilient SoS) using the degree of system order metric has found a unique balance of efficient and redundant interactions in their architecture. This balance implies that highly efficient ecosystems tend to be inflexible and vulnerable to perturbations, while highly redundant ecosystems fail to utilize resources effectively for survival. Motivated by this unique architectural property of ecosystems, this study investigates the response to disruptions versus affordability trade space of a large number of feasible SoS architectures. Results indicate that the most favorable SoS architectures in this trade space share a specific range of values of degree of system order. This suggests that degree of system order can be a key metric in engineered SoS development. Evaluating the degree of system order does not require detailed simulations and can, therefore, guide the early-stage SoS design process toward more optimal SoS architectures.

References

1.
Maier
,
M. W.
,
1998
, “
Architecting Principles for Systems-of-Systems
,” pp.
267
284
.
2.
Jamshidi
,
M.
and
Sage
,
A. P.
, eds.,
2009
,
System of Systems Engineering. Innovations for the 21st Century
,
John Wiley & Sons
3.
Guariniello
,
C.
, and
DeLaurentis
,
D.
,
2013
, “
Dependency Analysis of System-of-Systems Operational and Development Networks
,”
Conference on Systems Engineering Research
, Vol.
16
, pp.
265
274
.
4.
Sage
,
A. P.
, and
Cuppan
,
C. D.
,
2001
, “
On the Systems Engineering and Management of Systems of Systems and Federations of Systems
,”
Inform. Knowledge Syst. Manage.
,
2
(
4
), pp.
325
345
.
5.
Uday
,
P.
, and
Marais
,
K.
,
2015
, “
Designing Resilient Systems-of-Systems: A Survey of Metrics, Methods, and Challenges
,”
Syst. Engin.
,
18
(
5
), pp.
491
510
.
6.
Madni
,
A. M.
, and
Jackson
,
S.
,
2009
, “
Towards a Conceptual Framework for Resilience Engineering
,”
IEEE Syst. J.
,
3
(
2
), pp.
181
191
.
7.
Jackson
,
S.
, and
Ferris
,
T. L. J.
,
2013
, “
Resilience Principles for Engineered Systems
,” pp.
152
164
.
8.
Uday
,
P.
, and
Marais
,
K.
,
2013
, “
Exploiting Stand-In Redundancy to Improve Resilience in a System-of-Systems (SoS)
,”
Conference on Systems Engineering Research
, Vol.
16
, pp.
532
541
.
9.
Wheaton
,
M.
, and
Madni
,
A. M.
,
2015
, “
Resiliency and Affordability Attributes in a System Tradespace
,”
AIAA Space 2015 Conference and Expositionp.
4434
.
10.
Holling
,
C. S.
,
1973
, “
Resilience and Stability of Ecological Systems
,”
Ann. Rev. Ecolog. Systemat.
,
4
(
1
), pp.
1
23
.
11.
Ulanowicz
,
R. E.
,
2004
, “
Quantitative Methods for Ecological Network Analysis
,”
Comput. Biol. Chem.
,
28
(
5
), pp.
321
339
.
12.
Ulanowicz
,
R. E.
,
Goerner
,
S. J.
,
Lietaer
,
B.
, and
Gomez
,
R.
,
2009
, “
Quantifying Sustainability: Resilience, Efficiency and the Return of Information Theory
,”
Ecolog. Complex.
,
6
(
1
), pp.
27
36
.
13.
Fath
,
B. D.
,
2015
, “
Quantifying Economic and Ecological Sustainability
,”
Ocean Coastal Manage.
,
108
, pp.
13
19
.
14.
Ulanowicz
,
R. E.
,
2009
, “
The Dual Nature of Ecosystem Dynamics
,”
Ecolog. Model.
,
220
(
16
), pp.
1886
1892
.
15.
Chatterjee
,
A.
,
Malak
,
R.
, and
Layton
,
A.
,
2020
, “
Exploring System of Systems Resilience vs. Affordability Trade-Space Using a Bio-inspired Metric
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
,
Virtual, Online
,
Aug. 17–19
.
16.
Barker
,
K.
,
Ramirez-Marquez
,
J. E.
, and
Rocco
,
C. M.
,
2013
, “
Resilience-Based Network Component Importance Measures
,”
Reliab. Eng. Syst. Safety
,
117
, pp.
89
97
.
17.
Hosseini
,
S.
,
Barker
,
K.
, and
Ramirez-Marquez
,
J. E.
,
2016
, “
A Review of Definitions and Measures of System Resilience
,”
Reliab. Engin. Syst. Safety
,
145
, pp.
47
61
.
18.
Henry
,
D.
, and
Emmanuel Ramirez-Marquez
,
J.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Engin. Syst. Safety
,
99
, pp.
114
122
.
19.
Ayyub
,
B. M.
,
2014
, “
Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making
,”
Risk Anal.
,
34
(
2
), pp.
340
355
.
20.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Modeling and Quantification for Engineered Systems Using Bayesian Networks
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031404
.
21.
SEBoK
,
2019
, “
System Resilience
”.
22.
Tran
,
H. T.
,
Balchanos
,
M.
,
Domerçant
,
J. C.
, and
Mavris
,
D. N.
,
2017
, “
A Framework for the Quantitative Assessment of Performance-Based System Resilience
,”
Reliab. Engin. Syst. Safety
,
158
, pp.
73
84
.
23.
Uday
,
P.
,
Chandrahasa
,
R.
, and
Marais
,
K.
,
2019
, “
System Importance Measures: Definitions and Application to System-of-Systems Analysis
,”
Reliab. Engin. Syst. Safety
,
191
, p.
106582
.
24.
Han
,
S. Y.
,
Marais
,
K.
, and
DeLaurentis
,
D.
,
2012
, “
Evaluating System of Systems Resilience Using Interdependency Analysis
,”
2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
, pp.
1251
1256
.
25.
Kenley
,
C. R.
,
Dannenhoffer
,
T. M.
,
Wood
,
P. C.
, and
DeLaurentis
,
D. A.
,
2014
, “
1.4.2 Synthesizing and Specifying Architectures for System of Systems
,” INCOSE Int. Symposium,
24
(
1
), pp.
94
107
.
26.
Davendralingam
,
N.
,
DeLaurentis
,
D.
,
Fang
,
Z.
,
Guariniello
,
C.
,
Han
,
S. Y.
,
Marais
,
K. B.
,
Mour
,
A.
, and
Uday
,
P.
,
2014
, “
An Analytic Workbench Perspective to Evolution of System of Systems Architectures
,”
Conference on Systems Engineering Research
, pp.
702
710
.
27.
DeLaurentis
,
D.
,
Davendralingam
,
N.
,
Marais
,
K.
,
Guariniello
,
C.
,
Fang
,
Z.
, and
Uday
,
P.
,
2017
, “
An SoS Analytical Workbench Approach to Architectural Analysis and Evolution
,” pp.
69
73
.
28.
Mour
,
A.
,
Kenley
,
C. R.
,
Davendralingam
,
N.
, and
DeLaurentis
,
D.
,
2013
, “
Agent-Based Modeling for Systems of Systems
,”
INCOSE International Symposium
, Vol.
23
,
Wiley Online Library
, pp.
973
987
.
29.
Fry
,
D. N.
,
Campbell
,
R.
, and
DeLaurentis
,
D. A.
,
2015
, “
Modeling Systems-of-Systems From Multiple Design Perspectives: Agents, Interfaces, and Architectures
,”
AIAA Modeling and Simulation Technologies Conference
, p.
0908
.
30.
Raz
,
A. K.
,
Kenley
,
C. R.
, and
DeLaurentis
,
D. A.
,
2017
, “
A System-of-Systems Perspective for Information Fusion System Design and Evaluation
,”
Inform. Fusion
,
35
, pp.
148
165
.
31.
Sahin
,
F.
,
Jamshidi
,
M.
, and
Sridhar
,
P.
,
2007
, “
A Discrete Event Xml Based Simulation Framework for System of Systems Architectures
,”
2007 IEEE International Conference on System of Systems Engineering
, pp.
1
7
.
32.
Guariniello
,
C.
, and
DeLaurentis
,
D.
,
2017
, “
Supporting Design Via the System Operational Dependency Analysis Methodology
,”
Res. Engin. Des.
,
28
(
1
), pp.
53
69
.
33.
Garvey
,
P. R.
, and
Pinto
,
C. A.
,
2009
, “
Introduction to Functional Dependency Network Analysis
,”
The MITRE Corporation and Old Dominion Second International, Symposium on Engineering Systems
,
Cambridge, MA
,
June 15–17
.
34.
Zhang
,
W. X.
,
Wang
,
Y.
, and
Li
,
Q.
,
2014
, “An Improved Functional Dependency Network Model for SoS Operability Analysis,”
Applied Mechanics and Materials
, Vol.
602
,
Trans Tech Publ
, pp.
3355
3358
.
35.
Van Bossuyt
,
D. L.
, and
Arlitt
,
R. M.
,
2020
, “
A Functional Failure Analysis Method of Identifying and Mitigating Spurious System Emissions From a System of Interest in a System of Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
054501
.
36.
Zhou
,
Y.
,
Wang
,
J.
, and
Yang
,
H.
,
2019
, “
Resilience of Transportation Systems: Concepts and Comprehensive Review
,”
IEEE Trans. Intel. Trans. Syst.
,
20
(
12
), pp.
4262
4276
.
37.
Zhao
,
K.
,
Kumar
,
A.
,
Harrison
,
T. P.
, and
Yen
,
J.
,
2011
, “
Analyzing the Resilience of Complex Supply Network Topologies Against Random and Targeted Disruptions
,”
IEEE Syst. J.
,
5
(
1
), pp.
28
39
.
38.
Ip
,
W. H.
, and
Wang
,
D.
,
2011
, “
Resilience and Friability of Transportation Networks: Evaluation, Analysis and Optimization
,”
IEEE Syst. J.
,
5
(
2
), pp.
189
198
.
39.
Clark
,
K. L.
,
Bhatia
,
U.
,
Kodra
,
E. A.
, and
Ganguly
,
A. R.
,
2018
, “
Resilience of the Us National Airspace System Airport Network
,”
IEEE Trans. Intell. Trans. Syst.
,
19
(
12
), pp.
3785
3794
.
40.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Engin. Manage.
,
48
(
3
), pp.
292
306
.
41.
Ho“ltta”-Otto
,
K.
, and
de Weck
,
O.
,
2007
, “
Metrics for Assessing Coupling Density and Modularity in Complex Products and Systems
,” ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 3:
19th International Conference on Design Theory and Methodology; 1st International Conference on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies
, Parts A and B, pp.
343
352
.
42.
Raz
,
A. K.
, and
DeLaurentis
,
D. A.
,
2017
, “
System-of-Systems Architecture Metrics for Information Fusion: A Network Theoretic Formulation
,” p.
1292
.
43.
Meng
,
F.
,
Fu
,
G.
,
Farmani
,
R.
,
Sweetapple
,
C.
, and
Butler
,
D.
,
2018
, “
Topological Attributes of Network Resilience: A Study in Water Distribution Systems
,”
Water. Res.
,
143
, pp.
376
386
.
44.
Yang
,
G.
,
Zhang
,
W.
,
Xiu
,
B.
,
Liu
,
Z.
, and
Huang
,
J.
,
2014
, “
Key Potential-Oriented Criticality Analysis for Complex Military Organization Based on Finc-e Model
,”
Comput. Math. Org. Theory
,
20
(
3
), pp.
278
301
.
45.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Ecological Principles and Metrics for Improving Material Cycling Structures in Manufacturing Networks
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101002
.
46.
Ulanowicz
,
R. E.
, and
Norden
,
J. S.
,
1990
, “
Symmetrical Overhead in Flow Networks
,”
Int. J. Syst. Sci.
,
21
(
2
), pp.
429
437
.
47.
Fath
,
B. D.
,
Scharler
,
U. M.
,
Ulanowicz
,
R. E.
, and
Hannon
,
B.
,
2007
, “
Ecological Network Analysis: Network Construction
,”
Ecolog. Model.
,
208
(
1
), pp.
49
55
.
48.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Designing Industrial Networks Using Ecological Food Web Metrics
,”
Environ. Sci. Technol.
,
50
(
20
), pp.
11243
11252
.
49.
Fath
,
B. D.
,
Asmus
,
H.
,
Asmus
,
R.
,
Baird
,
D.
,
Borrett
,
S. R.
,
de Jonge
,
V. N.
,
Ludovisi
,
A.
,
Niquil
,
N.
,
Scharler
,
U. M.
,
Schückel
,
U.
, and
Wolff
,
M.
,
2019
, “
Ecological Network Analysis Metrics: The Need for an Entire Ecosystem Approach in Management and Policy
,”
Ocean Coastal Manage.
,
174
, pp.
1
14
.
50.
Fath
,
B. D.
, and
Patten
,
B. C.
,
1998
, “
Network Synergism: Emergence of Positive Relations in Ecological Systems
,”
Ecolog. Model.
,
107
(
2
), pp.
127
143
.
51.
Chatterjee
,
A.
, and
Layton
,
A.
,
2020
, “
Bio-Inspired Human Network Design: A Multi-Currency Robustness Metric Inspired by Ecological Network Analysis
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
52.
Ulanowicz
,
R. E.
,
1986
,
Growth and Development: Ecosystems Phenomenology
,
Springer-Verlag
,
New York
.
53.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2015
, “
Ecological Robustness as a Design Principle for Sustainable Industrial Systems
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 4:
20th Design for Manufacturing and the Life Cycle Conference; 9th International Conference on Micro- and Nanosystems
, p.
V004T05A047
.
54.
Panyam
,
V.
,
Huang
,
H.
,
Davis
,
K.
, and
Layton
,
A.
,
2019
, “
Bio-inspired Design for Robust Power Grid Networks
,”
Appl. Energy.
,
251
, p.
113349
.
55.
Dave
,
T.
, and
Layton
,
A.
,
2020
, “
Designing Ecologically-Inspired Robustness Into a Water Distribution Network
,”
J. Cleaner. Prod.
,
254
, p.
120057
.
56.
Chatterjee
,
A.
, and
Layton
,
A.
,
2020
, “
Mimicking Nature for Resilient Resource and Infrastructure Network Design
,”
Reliab. Engin. Syst. Safety
,
204
, p.
107142
.
57.
NASA
,
1986
, “
Nasa Task Load Index (tlx) v. 1.0 Manual
,” Report.
58.
Meilich
,
A.
,
2006
, “
System of Systems (SoS) Engineering & Architecture Challenges in a Net Centric Environment
,”
2006 IEEE/SMC International Conference on System of Systems Engineering
, p.
5
.
59.
Billaud
,
S.
,
Daclin
,
N.
, and
Chapurlat
,
V.
,
2015
, “Interoperability as a Key Concept for the Control and Evolution of the System of Systems (SoS),”
Enterprise Interoperability
, Vol.
213
,
M.
van Sinderen
, and
V.
Chapurlat
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
53
63
.
60.
Polityko
,
E.
,
2008
, “
Calculation of Pareto Points
,” MATLAB Central File Exchange.
61.
Massey
,
F. J.
,
1951
, “
The Kolmogorov-Smirnov Test for Goodness of Fit
,”
J. Am. Stat. Assoc.
,
46
(
253
), pp.
68
78
.
62.
Chatterjee
,
A.
,
Malak
,
R.
, and
Layton
,
A.
,
2020
, “
A Bio-Inspired Framework for Analyzing and Predicting the Trade-Off Between System of Systems Attributes
,”
Conference on Systems Engineering Research
,
Virtual, Online
,
Oct. 8–10
.
63.
U.S. Department of Defense
,
2011
, “
Fact Sheet: Resilience of Space Capabilities
,” Report.
You do not currently have access to this content.