Abstract

The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict the MTTF in the design stage by means of a physics-based Gaussian process (GP) method. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). The proposed adaptive supervised training method with the Gaussian process regression can quickly predict the MTTF with a reduced number of physical model calls. The proposed method can enable continually improved design by changing design variables until reliability measures, including the MTTF, are satisfied. The effectiveness of the method is demonstrated by three examples.

References

1.
O’Connor
,
P.
, and
Kleyner
,
A.
,
2012
,
Practical Reliability Engineering
,
John Wiley & Sons
,
New York
.
2.
Henley
,
E. J.
, and
Kumamoto
,
H.
,
1981
,
Reliability Engineering and Risk Assessment
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Birolini
,
A.
,
2013
,
Reliability Engineering: Theory and Practice
,
Springer Science & Business Media
,
Berlin
.
4.
Zio
,
E.
,
2009
, “
Reliability Engineering: Old Problems and New Challenges
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
125
141
. 10.1016/j.ress.2008.06.002
5.
Pham
,
H.
,
2006
,
Handbook of Reliability Engineering
,
Springer Science & Business Media
,
New York
.
6.
Rausand
,
M.
, and
Høyland
,
A.
,
2004
,
System Reliability Theory: Models, Statistical Methods, and Applications
,
John Wiley & Sons
,
New York
.
7.
Meeker
,
W. Q.
, and
Escobar
,
L. A.
,
2014
,
Statistical Methods for Reliability Data
,
John Wiley & Sons
,
New York
.
8.
Lawless
,
J.
,
1983
, “
Statistical Methods in Reliability
,”
Technometrics
,
25
(
4
), pp.
305
316
. 10.1080/00401706.1983.10487887
9.
Epstein
,
B.
, and
Sobel
,
M.
,
1953
, “
Life Testing
,”
J. Am. Stat. Assoc.
,
48
(
263
), pp.
486
502
. 10.1080/01621459.1953.10483488
10.
Viertl
,
R.
,
1988
,
Statistical Methods in Accelerated Life Testing
,
Vandenhoeck & Ruprecht
,
Göttingen
.
11.
Zhang
,
X. P.
,
Shang
,
J. Z.
,
Chen
,
X.
,
Zhang
,
C. H.
, and
Wang
,
Y. S.
,
2014
, “
Statistical Inference of Accelerated Life Testing With Dependent Competing Failures Based on Copula Theory
,”
IEEE Trans. Reliab.
,
63
(
3
), pp.
764
780
. 10.1109/TR.2014.2314598
12.
Hu
,
Z.
,
Mahadevan
,
S. J. Q.
, and
International
,
R. E.
,
2016
, “
Accelerated Life Testing (ALT) Design Based on Computational Reliability Analysis
,”
Qual. Reliab. Eng. Int.
,
32
(
7
), pp.
2217
2232
. 10.1002/qre.1929
13.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
14.
Hu
,
Z.
, and
Du
,
X.
, “
A Physics-Based Reliability Method for Components Adopted in New Series Systems
,”
Proceedings of 2016 Annual Reliability and Maintainability Symposium (RAMS)
,
IEEE
, pp.
1
7
.
15.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Integration of Statistics- and Physics-Based Methods—A Feasibility Study on Accurate System Reliability Prediction
,”
ASME J. Mech. Des.
,
140
(
7
), p.
074501
. 10.1115/1.4039770
16.
Melchers
,
R. E.
, and
Beck
,
A. T.
,
2018
,
Structural Reliability Analysis and Prediction
,
John Wiley & Sons
.
17.
Thoft-Cristensen
,
P.
, and
Baker
,
M. J.
,
2012
,
Structural Reliability Theory and Its Applications
,
Springer Science & Business Media
,
New York
.
18.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
19.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
20.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.-M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
. 10.1007/s00158-011-0653-8
21.
Liu
,
X.
,
Wu
,
Y.
,
Wang
,
B.
,
Ding
,
J.
, and
Jie
,
H.
,
2017
, “
An Adaptive Local Range Sampling Method for Reliability-Based Design Optimization Using Support Vector Machine and Kriging Model
,”
Struct. Multidiscip. Optim.
,
55
(
6
), pp.
2285
2304
. 10.1007/s00158-016-1641-9
22.
Papadrakakis
,
M.
, and
Lagaros
,
N. D.
,
2002
, “
Reliability-Based Structural Optimization Using Neural Networks and Monte Carlo Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
32
), pp.
3491
3507
. 10.1016/S0045-7825(02)00287-6
23.
Wang
,
C.
,
Zhang
,
H.
, and
Li
,
Q.
,
2019
, “
Moment-Based Evaluation of Structural Reliability
,”
Reliability Engineering & System Safety
,
181
, pp.
38
45
.
24.
Shi
,
Y.
,
Zhenzhou
,
L.
,
Chen
,
S.
, and
Xu
,
L.
,
2018
, “
A Reliability Analysis Method Based on Analytical Expressions of the First Four Moments of the Surrogate Model of the Performance Function
,”
Mechanical Systems & Signal Processing
,
111
, pp.
47
67
.
25.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Saddlepoint Approximation Reliability Method for Quadratic Functions in Normal Variables
,”
Struct. Saf.
,
71
, pp.
24
32
. 10.1016/j.strusafe.2017.11.001
26.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
. 10.1016/j.ress.2016.09.003
27.
Peijuan
,
Z.
,
Ming
,
W. C.
,
Zhouhong
,
Z.
, and
Liqi
,
W.
,
2017
, “
A New Active Learning Method Based on the Learning Function U of the AK-MCS Reliability Analysis Method
,”
Eng. Struct.
,
148
, pp.
185
194
. 10.1016/j.engstruct.2017.06.038
28.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
. 10.1016/j.strusafe.2011.01.002
29.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
. 10.1007/s00158-009-0478-x
30.
Yun
,
W.
,
Zhenzhou
,
L.
,
Zhou
,
Y.
, and
Jiang
,
X.
,
2018
, “
AK-SYSi: An Improved Adaptive Kriging Model for System Reliability Analysis With Multiple Failure Modes by a Refined U Learning Function
,”
Struct. Multidiscip. Optim.
,
59
, pp.
263
278
.
31.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
. 10.1115/1.4046648
32.
Song
,
J.
, and
Kang
,
W.-H.
,
2009
, “
System Reliability and Sensitivity Under Statistical Dependence by Matrix-Based System Reliability Method
,”
Struct. Saf.
,
31
(
2
), pp.
148
156
. 10.1016/j.strusafe.2008.06.012
33.
Youn
,
B. D.
, and
Wang
,
P.
,
2009
, “
Complementary Intersection Method for System Reliability Analysis
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041004
. 10.1115/1.3086794
34.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
. 10.1115/1.4033428
35.
Jiang
,
C.
,
Wei
,
X. P.
,
Huang
,
Z. L.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
. 10.1115/1.4035792
36.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
. 10.1115/1.4035860
37.
Gong
,
C.
, and
Frangopol
,
D. M.
,
2019
, “
An Efficient Time-Dependent Reliability Method
,”
Struct. Saf.
,
81
, p.
101864
. 10.1016/j.strusafe.2019.05.001
38.
Shi
,
Y.
,
Lu
,
Z.
,
Xu
,
L.
, and
Chen
,
S.
,
2019
, “
An Adaptive Multiple-Kriging-Surrogate Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Model.
,
70
, pp.
545
571
. 10.1016/j.apm.2019.01.040
39.
Jiang
,
C.
,
Wei
,
X. P.
,
Wu
,
B.
, and
Huang
,
Z. L.
,
2018
, “
An Improved TRPD Method for Time-Variant Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
58
(
5
), pp.
1935
1946
. 10.1007/s00158-018-2002-7
40.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Resilience Assessment Based on Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111404
. 10.1115/1.4034109
41.
Hu
,
Y.
,
Lu
,
Z.
,
Wei
,
N.
, and
Zhou
,
C.
,
2020
, “
A Single-Loop Kriging Surrogate Model Method by Considering the First Failure Instant for Time-Dependent Reliability Analysis and Safety Lifetime Analysis
,”
Mechanical Systems & Signal Processing
,
145
, p.
106963
. 10.1016/j.ymssp.2020.106963
42.
Wei
,
X.
, and
Du
,
X.
,
2019
, “
Uncertainty Analysis for Time-and Space-Dependent Responses With Random Variables
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021402
. 10.1115/1.4041429
43.
Shi
,
Y.
,
Lu
,
Z.
,
Zhang
,
K.
, and
Wei
,
Y.
,
2017
, “
Reliability Analysis for Structures With Multiple Temporal and Spatial Parameters Based on the Effective First-Crossing Point
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121403
. 10.1115/1.4037673
44.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Nithiarasu
,
P.
, and
Zhu
,
J.
,
1977
,
The Finite Element Method
,
McGraw-Hill
,
London
.
45.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press Cambridge
,
MA
.
46.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
DACE: A Matlab Kriging Toolbox
,
Citeseer
,
Denmark
.
47.
Rocco
,
C. M.
, and
Moreno
,
J. A.
,
2002
, “
Fast Monte Carlo Reliability Evaluation Using Support Vector Machine
,”
Reliab. Eng. Syst. Saf.
,
76
(
3
), pp.
237
243
. 10.1016/S0951-8320(02)00015-7
48.
Pan
,
Q.
, and
Dias
,
D.
,
2017
, “
An Efficient Reliability Method Combining Adaptive Support Vector Machine and Monte Carlo Simulation
,”
Struct. Saf.
,
67
, pp.
85
95
. 10.1016/j.strusafe.2017.04.006
49.
Cheng
,
J.
,
Li
,
Q. S.
, and
Xiao
,
R.
,
2008
, “
A New Artificial Neural Network-Based Response Surface Method for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
23
(
1
), pp.
51
63
. 10.1016/j.probengmech.2007.10.003
50.
Chojaczyk
,
A. A.
,
Teixeira
,
A. P.
,
Neves
,
L. C.
,
Cardoso
,
J. B.
, and
Soares
,
C. G.
,
2015
, “
Review and Application of Artificial Neural Networks Models in Reliability Analysis of Steel Structures
,”
Struct. Saf.
,
52
(
3
), pp.
78
89
. 10.1016/j.strusafe.2014.09.002
51.
Dai
,
H.
,
Zhang
,
H.
, and
Wang
,
W.
,
2015
, “
A Multiwavelet Neural Network-Based Response Surface Method for Structural Reliability Analysis
,”
Comput.-Aided Civil Infrastruct. Eng.
,
30
(
2
), pp.
151
162
. 10.1111/mice.12086
52.
Kotsiantis
,
S. B.
,
Zaharakis
,
I.
, and
Pintelas
,
P.
,
2007
, “
Supervised Machine Learning: A Review of Classification Techniques
,”
Emerging Artif. Intell. Appl. Comput. Eng.
,
160
(
1
), pp.
3
24
. 10.1007/s10462-007-9052-3
53.
Mooney
,
C. Z.
,
1997
,
Monte Carlo Simulation
,
Sage Publications
,
Thousand Oaks
, CA.
54.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
. 10.1007/s00158-014-1132-9
55.
Eliason
,
S. R.
,
1993
,
Maximum Likelihood Estimation: Logic and Practice
,
Sage
,
Newbury Park, CA
.
56.
Chen
,
W.
,
Tsui
,
K.-L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1995
, “
Integration of the Response Surface Methodology With the Compromise Decision Support Problem in Developing a General Robust Design Procedure
,”
ASME Design Automation Conference
,
Boston, MA
,
Sept. 17–20
, pp.
485
492
.
57.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications with Multiple Uncertain Input Variables
,”
Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Hawaii
,
Apr. 23–26
, p.
1939
.
58.
Wei
,
X.
, and
Du
,
X.
,
2020
, “
Robustness Metric for Robust Design Optimization Under Time-and Space-Dependent Uncertainty Through Metamodeling
,”
ASME J. Mech. Des.
,
142
(
3
), p.
041404
. 10.1115/1.4045599
59.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
,
Stochastic finite element methods and reliability: a state-of-the-art report
,
Department of Civil and Environmental Engineering, University of California Berkeley
,
Berkeley, CA
.
60.
Lizotte
,
D. J.
,
2008
,
Practical Bayesian Optimization
,
University of Alberta
,
Alberta
.
61.
Zhang
,
Z.
,
Jiang
,
C.
,
Han
,
X.
, and
Ruan
,
X.
,
2019
, “
A High-Precision Probabilistic Uncertainty Propagation Method for Problems Involving Multimodal Distributions
,”
Mech. Syst. Sig. Process.
,
126
, pp.
21
41
. 10.1016/j.ymssp.2019.01.031
62.
Gomes
,
H. M.
,
2011
, “
Truss Optimization With Dynamic Constraints Using a Particle Swarm Algorithm
,”
Expert Syst. Appl.
,
38
(
1
), pp.
957
968
. 10.1016/j.eswa.2010.07.086
You do not currently have access to this content.