A method is presented for formulating and numerically integrating ordinary differential equations (ODEs) of motion for holonomically constrained multibody systems. Tangent space coordinates are defined as independent generalized coordinates that serve as state variables in the formulation, yielding ODEs of motion. Orthogonal dependent coordinates are used to enforce kinematic constraints at position, velocity, and acceleration levels. Criteria that assure accuracy of constraint satisfaction and well conditioning of the reduced mass matrix in the equations of motion are used as the basis for redefining local coordinates on the constraint manifold, as needed, transparent to the user and at minimal computational cost. The formulation is developed for holonomically constrained multibody models that are based on essentially any form of generalized coordinates. A spinning top with Euler parameter orientation coordinates is used as a model problem to analytically reduce Euler's equations of motion to ODEs. Numerical results using a fourth-order Nystrom integrator verify that accurate results are obtained, satisfying position, velocity, and acceleration constraints to computer precision. A computational algorithm for implementing the approach with state-of-the-art explicit numerical integrators is presented and used in solution of three examples, one planar and two spatial. Performance of the method in satisfying all three forms of kinematic constraint, based on error tolerances embedded in the formulation, is verified.

References

1.
Haug
,
E. J.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
,
Boston, MA
.
2.
Pars
,
L. A.
,
1979
,
A Treatise on Analytical Dynamics
,
Ox Bow Press
,
Woodbridge, CT
.
3.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 2nd ed.,
Springer-Verlag
,
Berlin
.
4.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.
5.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.
6.
Potra
,
F. A.
, and
Rheinboldt
,
W. C.
,
1991
, “
On the Numerical Solution of the Euler-Lagrange Equations
,”
Mech. Struct. Mach.
,
19
(
1
), pp.
1
18
.
7.
Petzold
,
L. R.
, and
Potra
,
F. A.
,
1992
, “
ODAE Methods for the Numerical Solution of Euler-Lagrange Equations
,”
Appl. Numer. Math.
,
10
(
5
), pp.
397
413
.
8.
Betsch
,
P.
,
2005
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems; Part I: Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–52
), pp.
5159
5190
.
9.
Aghili
,
F.
,
2005
, “
A Unified Approach for Inverse and Direct Dynamics of Constrained Multibody Systems Based on Linear Projection Operator: Applications to Control and Simulation
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
834
849
.
10.
Hairer
,
E.
,
2011
,
Solving Differential Equations on Manifolds
, Lecture Notes,
Universite de Geneve
,
Geneva, Switzerland
.
11.
Muller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.
12.
Eich-Soellner
,
E.
, and
Fuhrer
,
K.
,
1998
,
Numerical Methods in Multibody Dynamics
,
B. G. Teubner
,
Stuttgart, Germany
.
13.
Coddington
,
E. A.
, and
Levinson
,
N.
,
1955
,
Theory of Ordinary Differential Equations
,
McGraw-Hill
,
New York
.
14.
Maggi
,
G. A.
,
1896
,
Principii della Teoria Matematica del Movimento dei Corpi: Corso de Meccanica Razionale
,
Ulrico Hoepli
,
Milano, Italy
.
15.
Singh
,
R. P.
, and
Likins
,
P. W.
,
1985
, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
943
948
.
16.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
,
1986
, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems
,”
ASME J. Mech., Trans. Autom. Des.
,
108
(
2
), pp.
183
188
.
17.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems
,
Springer-Verlag
,
Berlin
.
18.
Borri
,
M.
,
Bottasso
,
C.
, and
Mantegazza
,
P.
,
1992
, “
Acceleration Projection Method in Multibody Dynamics
,”
Eur. J. Mech., A/Solids
,
11
(
3
), pp. 403–418.
19.
Liang
,
C. G.
, and
Lance
,
G. M.
,
1987
, “
A Differentiable Null Space Method for Constrained Dynamic Analysis
,”
ASME J. Mech.
, Trans. Autom. Des.,
109
(
3
), pp.
405
411
.
20.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.
21.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
,
2003
, “
An Implicit Runge–Kutta Method For Integration of Differential-Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
121
142
.
22.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
ASME J. Mech., Trans. Autom. Des.
,
107
(
1
), pp.
82
87
.
23.
Arnold
,
V. I.
,
1978
,
Mathematical Methods of Classical Mechanics
,
Springer
,
New York
.
24.
Serban
,
R.
, and
Haug
,
E. J.
,
1998
, “
Kinematic and Kinetic Derivatives in Multibody System Analysis
,”
Mech. Struct. Mach.
,
26
(
2
), pp.
145
173
.
You do not currently have access to this content.