Skip Nav Destination
Issues
January 2014
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Guest Editorial
Flexible Multibody Dynamics—Essential for Accurate Modeling in Multibody System Dynamics
J. Comput. Nonlinear Dynam. January 2014, 9(1): 010301.
doi: https://doi.org/10.1115/1.4026014
Topics:
Dynamics (Mechanics)
,
Modeling
,
Multibody dynamics
,
Multibody systems
Research Papers
Sliding and Nonsliding Joint Constraints of B-Spline Plate Elements for Integration With Flexible Multibody Dynamics Simulation
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011001.
doi: https://doi.org/10.1115/1.4025277
Topics:
B-splines
,
Equations of motion
Modal Selection Through Effective Interface Mass With Application to Flexible Multibody Cranktrain Dynamics
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011002.
doi: https://doi.org/10.1115/1.4025280
Topics:
Bearings
,
Dynamics (Mechanics)
,
Enterprise information management
,
Finite element analysis
,
Modeling
,
Simulation
,
Stress
,
Engines
,
Ball bearings
,
Deformation
A Flexible Multibody Model of a Safety Robot Arm for Experimental Validation and Analysis of Design Parameters
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011003.
doi: https://doi.org/10.1115/1.4025285
Topics:
Robots
,
Safety
,
Simulation
,
Stiffness
,
Wounds
,
Inertia (Mechanics)
,
Design
,
Pendulums
,
Urethane foam
Infinite-Dimensional Pole-Optimization Control Design for Flexible Structures Using the Transfer Matrix Method
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011004.
doi: https://doi.org/10.1115/1.4025352
Topics:
Design
,
Optimization
,
Poles (Building)
Stability Analysis of Multibody Systems With Long Flexible Bodies Using the Moving Modes Method and Its Application to Railroad Dynamics
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011005.
doi: https://doi.org/10.1115/1.4025284
Topics:
Deformation
,
Dynamics (Mechanics)
,
Equations of motion
,
Kinematics
,
Multibody systems
,
Railroads
,
Rails
,
Shapes
,
Stability
,
Stiffness
A Matrix-Free Newton–Krylov Parallel Implicit Implementation of the Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011006.
doi: https://doi.org/10.1115/1.4025281
Topics:
Algorithms
,
Equations of motion
,
Graphics processing units
,
Simulation
,
Kinematics
,
Computer software
Parametric Flexible Multibody Model for Material Removal During Turning
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011007.
doi: https://doi.org/10.1115/1.4025283
Topics:
Cycles
,
Cylinders
,
Dynamics (Mechanics)
,
Eigenvalues
,
Interpolation
,
Machining
,
Shapes
,
Stability
,
Turning
,
Vibration
Fluid-Conveying Flexible Pipes Modeled by Large-Deflection Finite Elements in Multibody Systems
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011008.
doi: https://doi.org/10.1115/1.4025353
Topics:
Flow (Dynamics)
,
Fluids
,
Pipes
Load and Response Identification for a Nonlinear Flexible Structure Subject to Harmonic Loads
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011009.
doi: https://doi.org/10.1115/1.4025505
Topics:
Algorithms
,
Sensors
,
Stress
Boundary Conditions That Govern the Lateral Behavior of Flexible Webs in Roll to Roll Process Machines
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011010.
doi: https://doi.org/10.1115/1.4025278
Topics:
Boundary-value problems
,
Deformation
,
Friction
,
Machinery
,
Rollers
,
Simulation
,
Arches
,
Light trucks
,
Steady state
,
Finite element analysis
Adaptive LQR-Control Design and Friction Compensation for Flexible High-Speed Rack Feeders
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011011.
doi: https://doi.org/10.1115/1.4025351
Topics:
Design
,
Feedback
,
Feedforward control
,
Friction
,
Modeling
,
Errors
,
Railroad passenger cars
,
Deflection
Integration of Nonlinear Models of Flexible Body Deformation in Multibody System Dynamics
Martin Schulze, Stefan Dietz, Bernhard Burgermeister, Andrey Tuganov, Holger Lang, Joachim Linn, Martin Arnold
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011012.
doi: https://doi.org/10.1115/1.4025279
Topics:
Blades
,
Deformation
,
Jacobian matrices
,
Multibody systems
,
Simulation
,
Wind turbines
,
Computer software
,
Rotors
,
Equations of motion
,
Approximation
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Buckling and Nonlinear Dynamic Examples
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011013.
doi: https://doi.org/10.1115/1.4025282
Topics:
Buckling
,
Finite element analysis
,
Shear (Mechanics)
,
Stress
,
Pendulums
,
Continuum mechanics
,
Deformation
,
Rotation
A Stable Inversion Method for Feedforward Control of Constrained Flexible Multibody Systems
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011014.
doi: https://doi.org/10.1115/1.4025476
A Numerical Method to Model Dynamic Behavior of Thin Inextensible Elastic Rods in Three Dimensions
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011015.
doi: https://doi.org/10.1115/1.4025627
Topics:
Boundary-value problems
,
Damping
,
Dimensions
,
Numerical analysis
,
Rods
,
Splines
,
Springs
Design and Performance Optimization of Large Stroke Spatial Flexures
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011016.
doi: https://doi.org/10.1115/1.4025669
Topics:
Bending (Stress)
,
Hinges
,
Optimization
,
Geometry
,
Warping
,
Deflection
Approximate End-Effector Tracking Control of Flexible Multibody Systems Using Singular Perturbations
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011017.
doi: https://doi.org/10.1115/1.4025635
Topics:
End effectors
,
Feedforward control
,
Manifolds
,
Multibody systems
,
Design
,
Tracking control
,
System dynamics
Flexible Multibody Modeling of a Surgical Instrument Inside an Endoscope
J. Comput. Nonlinear Dynam. January 2014, 9(1): 011018.
doi: https://doi.org/10.1115/1.4026059
Topics:
Endoscopes
,
Friction
,
Instrumentation
,
Rotation
,
Simulation results
,
Stiffness
,
Stress
,
Surgical tools
,
Simulation
,
Modeling
Email alerts
RSS Feeds
Numerical Simulation Method for the Rain-Wind Induced Vibration of the Three-Dimensional Flexible Stay Cable
J. Comput. Nonlinear Dynam (March 2025)
Complex Modal Synthesis Method for Viscoelastic Flexible Multibody System Described by ANCF
J. Comput. Nonlinear Dynam (March 2025)
A Nodal-Lie-Group beam element for absolute nodal coordinate formulations
J. Comput. Nonlinear Dynam
Modal Analysis for Localization in Multiple Nonlinear Tuned Mass Dampers Installed on a Structure
J. Comput. Nonlinear Dynam
Optimization Algorithm-Based Fault-Tolerant Resilient Control for Helicopter System: The Finite-Time Case
J. Comput. Nonlinear Dynam (February 2025)