Skip Nav Destination
Issues
October 2011
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Supercavitating Vehicles With Noncylindrical, Nonsymmetric Cavities: Dynamics and Instabilities
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041001.
doi: https://doi.org/10.1115/1.4003408
Topics:
Cavities
,
Vehicles
,
Cavitation
State Dependent Regenerative Effect in Milling Processes
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041002.
doi: https://doi.org/10.1115/1.4003624
Topics:
Bifurcation
,
Cutting
,
Delays
,
Milling
,
Stability
,
Vibration
,
Resonance
,
Machine tools
Parametric Estimation for Delayed Nonlinear Time-Varying Dynamical Systems
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041003.
doi: https://doi.org/10.1115/1.4003626
Topics:
Algorithms
,
Dynamic systems
,
Optimization
,
Pendulums
,
Algebra
,
Errors
,
Time-varying systems
Geometrically Exact Kirchhoff Beam Theory: Application to Cable Dynamics
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041004.
doi: https://doi.org/10.1115/1.4003625
Efficient Targeted Energy Transfer With Parallel Nonlinear Energy Sinks: Theory and Experiments
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041005.
doi: https://doi.org/10.1115/1.4003687
Topics:
Computer simulation
,
Energy transformation
,
Engineering prototypes
,
Excitation
,
Resonance
,
Stability
,
Stiffness
,
Design
,
Linear systems
,
Civil engineering
Study on the Identification of Experimental Chaotic Vibration Signal for Nonlinear Vibration Isolation System
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041006.
doi: https://doi.org/10.1115/1.4003805
Topics:
Chaos
,
Nonlinear vibration
,
Signals
,
Vibration
,
Wavelets
,
Attractors
,
Time series
,
Artificial neural networks
,
Excitation
On the Use of the Subharmonic Resonance as a Method for Filtration
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041007.
doi: https://doi.org/10.1115/1.4003031
Topics:
Bifurcation
,
Excitation
,
Filters
,
Filtration
,
Resonance
,
Stability
,
Frequency response
,
Deflection
,
Mode shapes
,
Hardening
Explicit Numerical Methods for Solving Stiff Dynamical Systems
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041008.
doi: https://doi.org/10.1115/1.4003706
Topics:
Dynamic systems
,
Numerical analysis
,
Runge-Kutta methods
Influence of Local Material Properties on the Nonlinear Dynamic Behavior of an Atomic Force Microscope Probe
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041009.
doi: https://doi.org/10.1115/1.4003732
Topics:
Atomic force microscopy
,
Bifurcation
,
Cantilevers
,
Excitation
,
Probes
,
Separation (Technology)
,
Simulation
,
Materials properties
,
Stiffness
Semialgebraic Regularization of Kinematic Loop Constraints in Multibody System Models
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041010.
doi: https://doi.org/10.1115/1.4002998
Topics:
Kinematics
,
Multibody systems
,
Screws
,
Algorithms
,
Manufacturing
Parameter Identification in Multibody Systems Using Lie Series Solutions and Symbolic Computation
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041011.
doi: https://doi.org/10.1115/1.4003686
Topics:
Computation
,
Equations of motion
,
Multibody systems
,
Optimization
,
Parameter estimation
,
Vehicles
,
Simulation
Equilibrium, Stability, and Dynamics of Rectangular Liquid-Filled Vessels
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041012.
doi: https://doi.org/10.1115/1.4003915
Topics:
Bifurcation
,
Dynamics (Mechanics)
,
Equilibrium (Physics)
,
Stability
,
Vessels
,
Center of mass
Modal Analysis of a Rotating Thin Plate via Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041013.
doi: https://doi.org/10.1115/1.4003975
Topics:
Cantilevers
,
Eigenvalues
,
Modal analysis
,
Mode shapes
,
Deformation
,
Jacobian matrices
,
Plates (structures)
Influence of Modal Coupling on the Nonlinear Dynamics of Augusti’s Model
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041014.
doi: https://doi.org/10.1115/1.4003880
Topics:
Bifurcation
,
Buckling
,
Erosion
,
Stability
,
Stress
,
Nonlinear dynamics
,
Fractals
,
Safety
,
Potential energy
Technical Briefs
A PID Type Constraint Stabilization Method for Numerical Integration of Multibody Systems
J. Comput. Nonlinear Dynam. October 2011, 6(4): 044501.
doi: https://doi.org/10.1115/1.4002688
Topics:
Algebra
,
Control equipment
,
Control theory
,
Equations of motion
,
Errors
,
Multibody systems
,
Simulation
,
Stability
,
Steady state
,
Design
Email alerts
RSS Feeds
An Efficient Analysis of Amplitude and Phase Dynamics in Networked MEMS-Colpitts Oscillators
J. Comput. Nonlinear Dynam
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam (December 2024)
Influences of Tooth Crack on Dynamic Characteristics of a Multi-Stage Gear Transmission System Considering the Flash Temperature
J. Comput. Nonlinear Dynam (December 2024)
Data-Driven Modeling of Tire–Soil Interaction With Proper Orthogonal Decomposition-Based Model Order Reduction
J. Comput. Nonlinear Dynam (December 2024)