The development of a multibody model of a motorbike L-twin engine cranktrain is presented in this work. The need for an accurate evaluation of the loads acting on the main engine components at high rotational speed makes it necessary to take element flexibility into account in order to capture elastodynamic effects, which might have a major impact on the dynamics of the system. Starting from finite element descriptions of both the crankshaft and the connecting rod, the classical Craig–Bampton (CB) technique is employed to obtain reduced models, which are suitable for the subsequent multibody analysis. A particular component mode selection procedure is implemented based on the concept of effective interface mass, allowing an assessment of the accuracy of the reduced model prior to the nonlinear simulation phase. Bearing dynamics also plays an important role in such a high-speed engine application: angular contact ball bearings are modeled according to a 5DOF nonlinear scheme in order to grasp the main bearings behavior while an impedance-based hydrodynamic bearing model is implemented providing an enhanced operation prediction at big end locations. The assembled cranktrain model is simulated using a commercial multibody software platform. Numerical results demonstrate the effectiveness of the procedure implemented for the flexible component model reduction. The advantages of this technique over the traditional mode truncation approach are discussed.

References

1.
Ramachandran
,
T.
, and
Padmanaban
,
K. P.
,
2012
, “
Review on Internal Combustion Engine Vibrations and Mountings
,”
Int. J. Eng. Sci. Emerg. Technol.
,
3
(
1
), pp.
63
73
.
2.
Zhang
,
X. M.
,
Wang
,
Y. Q.
, and
Fang
,
J.
,
2012
, “
Dynamic Simulation of Crank-Connecting Rod-Piston Mechanism of Internal Combustion Engine Based on Virtual Prototype Technology
,”
Appl. Mech. Mater.
,
143–144
, pp.
433
436
.
3.
Perera
,
M. S. M.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2010
, “
Elasto-Multi-Body Dynamics of Internal Combustion Engines With Tribological Conjunctions
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
224
(
3
), pp.
261
277
.
4.
Louvigny
,
Y.
, and
Duysinx
,
P.
,
2010
, “
Advanced Engine Dynamics Using MBS: Application to Twin-Cylinder Boxer Engines
,”
Proceedings of the IMSD 2010—The First Joint International Conference on Multibody System Dynamics
, Lappeenranta, Finland.
5.
Elmqvist
,
H.
,
Mattsson
,
S. E.
,
Olsson
,
H.
,
Andreasson
,
J.
,
Otter
,
M.
,
Schweiger
,
C.
, and
Brück
,
D.
,
2004
, “
Realtime Simulation of Detailed Vehicle and Powertrain Dynamics
,”
Proceedings of the SAE 2004 World Congress Electronics Simulation and Optimization
, Detroit, MI, Paper No. 2004–01-0768.
6.
Du
,
H. Y. I.
,
1999
, “Simulation of Flexible Rotating Crankshaft With Flexible Engine Block and Hydrodynamic Bearings for a V6 Engine,” SAE Paper No. 1999-01-1752.
7.
Drab
,
C. B.
,
Engl
,
H. W.
,
Haslinger
,
J. R.
,
Offner
,
G.
,
Pfau
,
R. U.
, and
Zulehner
,
W.
,
2009
, “
Dynamic Simulation of Crankshaft Multibody Systems
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
133
144
.10.1007/s11044-009-9152-8
8.
Drab
,
C. B.
,
Haslinger
,
J. R.
,
Pfau
,
R. U.
, and
Offner
,
G.
,
2007
, “
Comparison of the Classical Formulation With the Reference Conditions Formulation for Dynamic Flexible Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
4
), pp.
337
343
.10.1115/1.2756066
9.
Perera
,
M. S. M.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2007
, “
A Multi-Physics Multi-Scale Approach in Engine Design Analysis
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
221
(
2
), pp.
335
348
.
10.
Ma
,
Z.-D.
, and
Perkins
,
N. C.
,
2003
, “
An Efficient Multibody Dynamics Model for Internal Combustion Engine Systems
,”
Multibody Syst. Dyn.
,
10
(
4
), pp.
363
391
.10.1023/A:1026276619456
11.
Hoffman
,
D. M. W.
, and
Dowling
,
D. R.
,
2001
, “
Fully Coupled Internal Combustion Engine Dynamics and Vibration—Part I: Model Development
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
677
684
.10.1115/1.1370399
12.
Offner
,
G.
,
Krasser
,
J.
,
Laback
,
O.
, and
Priebsch
,
H. H.
,
2001
, “
Simulation of Multi-Body Dynamics and Elastohydrodynamic Excitation in Engines Especially Considering Piston-Liner Contact
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
215
(
2
), pp.
93
102
.
13.
Mourelatos
,
Z. P.
,
2001
, “
A Crankshaft System Model for Structural Dynamic Analysis of Internal Combustion Engines
,”
Comput. Struct.
,
79
(
20–21
), pp.
2009
2027
.10.1016/S0045-7949(01)00119-5
14.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
15.
Ricci
,
S.
,
Troncossi
,
M.
, and
Rivola
,
A.
,
2011
, “
Model Reduction of the Flexible Rotating Crankshaft of a Motorcycle Engine Cranktrain
,”
Int. J. Rotating Mach.
,
2011
, p.
143523
.
16.
Kammer
,
D. C.
, and
Triller
,
M. J.
,
1994
, “
Ranking the Dynamic Importance of Fixed Interface Modes Using a Generalization of Effective Mass
,”
Int. J. Anal. Exp. Modal Anal.
,
9
(
2
), pp.
77
98
.
17.
Kammer
,
D. C.
, and
Triller
,
M. J.
,
1996
, “
Selection of Component Modes for Craig-Bampton Substructure Representations
,”
ASME J. Vibr. Acoust.
,
118
(
2
), pp.
264
270
.10.1115/1.2889657
18.
Houpert
,
L.
,
1997
, “
A Uniform Analytical Approach for Ball and Roller Bearings Calculations
,”
ASME J. Tribol.
,
119
(
4
), pp.
851
858
.10.1115/1.2833896
19.
Hernot
,
X.
,
Sartor
,
M.
, and
Guillot
,
J.
,
2000
, “
Calculation of the Stiffness Matrix of Angular Contact Ball Bearings by Using the Analytical Approach
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
83
90
.10.1115/1.533548
20.
Childs
,
D.
,
Moes
,
H.
, and
van Leeuwen
,
H.
,
1977
, “
Journal Bearing Impedance Descriptions for Rotordynamic Applications
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
198
214
.10.1115/1.3453021
21.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University
,
New York
.
22.
Craig
,
R. R.
,
2000
, “
Coupling of Substructures for Dynamic Analysis: An Overview
,”
Proceedings of the 41st AIAA/ASMA/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference
, Atlanta, GA, Paper No. AIAA-2000-1573.
23.
Spanos
,
J. T.
, and
Tsuha
,
W. S.
,
1991
, “
Selection of Component Modes for Flexible Multibody Simulation
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
278
286
.10.2514/3.20638
24.
Moore
,
B. C.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability and Model Reduction
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
17
32
.10.1109/TAC.1981.1102568
25.
Gregory
,
C. Z.
,
1984
, “
Reduction of Large Flexible Spacecraft Models Using Internal Balancing Theory
,”
J. Guid. Control Dyn.
,
7
(
6
), pp.
725
732
.10.2514/3.19919
26.
Heirman
,
G. H. K.
, and
Desmet
,
W.
,
2010
, “
Interface Reduction of Flexible Bodies for Efficient Modeling of Body Flexibility in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
24
, pp.
219
234
.10.1007/s11044-010-9198-7
27.
MSC Software Corporation
,
2009
, “Theory of Flexible Bodies,” ADAMS Report No. 9304.
28.
Sjoväll
,
H.
,
1933
, “
The Load Distribution Within Ball and Roller Bearings Under Given External Radial and Axial Load
,”
Teknisk Tidskrift
, Mek., h.9.
29.
Booker
,
J. F.
,
1965
, “
Dynamically Loaded Journal Bearings: Mobility Method of Solution
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
537
546
.10.1115/1.3650602
30.
Szeri
,
A. Z.
,
1998
,
Fluid Film Lubrication: Theory and Design
,
Cambridge University
,
New York
.
31.
Rivola
,
A.
,
Troncossi
,
M.
,
Dalpiaz
,
G.
, and
Carlini
,
A.
,
2007
, “
Elastodynamic Analysis of the Desmodromic Valve Train of a Racing Motorbike Engine by Means of a Combined Lumped/Finite Element Model
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
735
760
.10.1016/j.ymssp.2006.06.004
32.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.10.2514/3.2874
You do not currently have access to this content.