The governing equation of milling processes is generalized with the help of accurate chip thickness derivation resulting in a state dependent delay model. This model is valid for large amplitude machine tool vibrations and uses accurate nonlinear screen functions describing the entrance and exit positions of the cutting edges of the milling tool relative to the workpiece. The periodic motions of this nonlinear system are calculated by a shooting method. The stability calculation is based on the linearization around these periodic solutions by means of the semidiscretization method applied for the corresponding time-periodic delay system. Predictor-corrector method is developed to continue the periodic solutions as the bifurcation parameter, that is, the axial immersion is varied. It is observed that the influence of the state dependent delay on linear stability can be significant close to resonance where large amplitude forced vibrations occur. The existence of an unusual fold bifurcation is shown where a kind of hysteresis phenomenon appears between two different stable periodic motions.

1.
Tobias
,
S. A.
, 1965,
Machine Tool Vibration
,
Blackie
,
London
.
2.
Bachrathy
,
D.
,
Insperger
,
T.
, and
Stépán
,
G.
, 2009, “
Surface Properties of the Machined Workpiece for Helical Mills
,”
Mach. Sci. Technol.
1091-0344,
13
(
2
), pp.
227
245
.
3.
Tlusty
,
J.
, and
Poláček
,
M.
, 1963, “
The Stability of Machine-Tool Against Self-Excited Vibration in Machining
,”
Proceedings of the International Research in Production Engineering
,
ASME
,
New York
, p.
465
.
4.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems
,
Longman
,
Harlow, UK
.
5.
Insperger
,
T.
, and
Stépán
,
G.
, 2000, “
Stability of High-Speed Milling
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL,
ASME
,
New York
, 241, pp.
119
123
.
6.
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
, 2005, “
Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
7–8
), pp.
769
781
.
7.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Diley
,
D. N.
, 2005, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
446
453
.
8.
Insperger
,
T.
, and
Stépán
,
G.
, 2001, “
Semi-Discretization of Delayed Dynamical Systems
,”
Proceedings of the ASME 2001 Design Engineering Technical Conferences
, Pittsburgh, PA,
ASME
,
New York
, Paper No. DETC2001/VIB-21446 (CD-ROM), p.
6
.
9.
Altintas
,
Y.
,
Stépán
,
G.
,
Merdola
,
D.
, and
Dombóvári
,
Z.
, 2008, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP Journal of Manufacturing Science and Technology
,
1
(
1
), pp.
35
44
.
10.
Taylor
,
F. W.
, 1907, “
On the Art of Cutting Metals
,”
American Society of Mechanical Engineers
,
28
(
1
), pp.
31
350
.
11.
Szalai
,
R.
,
Stépán
,
G.
, and
Hogan
,
S. J.
, 2004, “
Global Dynamics of Low Immersion High-Speed Milling
,”
Chaos
1054-1500,
14
, pp.
1069
1077
.
12.
Stepan
,
G.
,
Szalai
,
R.
,
Mann
,
B. P.
,
Bayly
,
P. V.
,
Insperger
,
T.
,
Gradisek
,
J.
, and
Govekar
,
E.
, 2005, “
Nonlinear Dynamics of High-Speed Milling—Analysis, Numerics, and Experiments
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
197
203
.
13.
Insperger
,
T.
,
Stépán
,
G.
,
Hartung
,
F.
, and
Turi
,
J.
, 2005, “
State Dependent Regenerative Delay in Milling Processes
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, Long Beach CA,
ASME
,
New York
, Paper No. DETC2005-85282 (CD-ROM), p.
10
.
14.
Surmann
,
T.
, 2006, “
Geometric Model of the Surface Structure Resulting From the Dynamic Milling Process
,”
Proceedings of the Ninth CIRP International Conference on Modeling of Machining Operations
, Bled, Slovenia, pp.
187
192
.
15.
Budak
,
E.
, and
Altintas
,
Y.
, 1996, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
(
2
), pp.
216
225
.
16.
Tlusty
,
J.
, and
Spacek
,
L.
, 1954,
Self-Excited Vibrations on Machine Tools
,
Nakl CSAV
,
Prague, Czech Republic
, in Czech.
17.
Shi
,
H. M.
, and
Tobias
,
S. A.
, 1984, “
Theory of Finite Amplitude Machine Tool Instability
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
24
(
1
), pp.
45
69
.
18.
Dombóvári
,
Z.
,
Wilson
,
R. E.
, and
Stépán
,
G.
, 2008, “
Estimates of the Bistable Region in Metal Cutting
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
(
2100
), pp.
3255
3271
.
19.
Faassen
,
R.
,
van de Wouw
,
N.
,
Oosterling
,
H.
, and
Nijmeijer
,
H.
, 2005, “
Updated Tool Path Modelling With Periodic Delay for Chatter Prediction in Milling
,”
Fifth EUROMECH Nonlinear Oscillations Conference (ENOC)
,
D.
van Campen
, ed., CDROM.
20.
Laczik
,
B.
, 1986, “
Vibration Monitoring of Cutting Processes
,” Ph.D. thesis, Budapest University of Technology and Economics, Budapest, Hungary.
21.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.
, and
Vakakis
,
A.
, 2009, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
0888-3270,
23
(
1
), pp.
170
194
.
22.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. -C.
, 2009, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
0888-3270,
23
(
1
), pp.
195
216
.
23.
Hartung
,
F.
, 2005, “
Linearized Stability in Periodic Functional Differential Equations With State-Dependent Delays
,”
J. Comput. Appl. Math.
0377-0427,
174
(
2
), pp.
201
211
.
24.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
1
), pp.
117
141
.
25.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
, 2008, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
0022-460X,
313
, pp.
334
341
.
26.
Balachandran
,
B.
,
Kalmár-Nagy
,
T.
, and
Gilsinn
,
D. E.
, 2009,
Delay Differential Equations: Recent Advances and New Directions
,
Springer
,
New York
.
27.
Hartung
,
F.
,
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
, 2006, “
Approximate Stability Charts for Milling Processes Using Semi-Discretization
,”
Appl. Math. Comput.
0096-3003,
174
(
1
), pp.
51
73
.
28.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation via Semi-Discretization
,”
J. Vib. Control
1077-5463,
10
, pp.
1835
1855
.
29.
Henninger
,
C.
, and
Eberhard
,
P.
, 2008, “
Improving the Computational Efficiency and Accuracy of the Semi-Discretization Method for Periodic Delay-Differential Equations
,”
Eur. J. Mech. A/Solids
0997-7538,
27
(
6
), pp.
975
985
.
30.
Elbeyli
,
O.
, and
Sun
,
J. Q.
, 2004, “
On the Semi-Discretization Method for Feedback Control Design of Linear Systems With Time Delay
,”
J. Sound Vib.
0022-460X,
273
(
1–2
), pp.
429
440
.
31.
Gradišek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
, 2004, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
4
), pp.
401
414
.
32.
Dombóvári
,
Z.
,
Barton
,
D. A. W.
,
Wilson
,
E. R.
, and
Gabor
,
S.
, 2011, “
On the Global Dynamics of Chatter in the Orthogonal Cutting Model
,”
Int. J. Non-Linear Mech.
0020-7462,
46
(
1
), pp.
330
338
.
33.
Balachandran
,
B.
, 2001, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
793
819
.
You do not currently have access to this content.