The paper presents analytical and numerical results of the primary resonance of a Duffing oscillator with two distinct time delays in the linear feedback control under narrow-band random excitation. Using the method of multiple scales, the first-order and the second-order steady-state moments of the primary resonance are derived. For the case of two distinct time delays, the appropriate choices of the combinations of the feedback gains and the difference between two time delays are discussed from the viewpoint of vibration control and stability. The analytical results are in well agreement with the numerical results.
Issue Section:
Modeling
1.
Hale
, J.
, 1977, Theory of Functional Differential Equations
, Springer-Verlag
, New York
.2.
Stepan
, D.
, 1989, Retarded Dynamical Systems: Stability and Characteristic Functions
, Longman Scientific and Technical
, Essex
.3.
Hu
, H. Y.
, and Wang
, Z. H.
, 2002, Dynamics of Controlled Mechanical Systems With Delayed Feedback
, Springer
, Heidelberg
.4.
Hu
, H. Y.
, Dowell
, E. H.
, and Virgin
, L. N.
, 1998, “Resonances of a Harmonically Forced Duffing Oscillator With Time Delay State Feedback
,” Nonlinear Dyn.
0924-090X, 15
, pp. 311
–327
.5.
Wang
, H. L.
, Hu
, H. Y.
, and Wang
, Z. H.
, 2004, “Global Dynamics of a Duffing Oscillator Within Delayed Displacement Feedback
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 14
(8
), pp. 2753
–2775
.6.
Ji
, J. C.
, and Leung
, A. Y. T.
, 2002, “Resonances of a Non-Linear s.d.o.f System With Two Time-Delays in Linear Feedback Control
,” J. Sound Vib.
0022-460X, 253
(5
), pp. 985
–1000
.7.
Maccari
, A.
, 2001, “The Response of a Parametrically Forced Van der Pol Oscillator to a Time Delay State Feedback
,” Nonlinear Dyn.
0924-090X, 26
, pp. 105
–119
.8.
Klosek
, M. M.
, 2004, “Multi-Scale Analysis of Effects of Additive and Multiplicative Noise on Delay Differential Equations Near a Bifurcation Point
,” Acta Phys. Pol. B
0587-4254, 35
, pp. 1387
–1405
.9.
Sun
, Z. K.
, Xu
, W.
, and Yang
, X. L.
, 2006, “Response of Nonlinear System to Random Narrow-Band Excitation With Time Delay State Feedback
,” Journal of Vibration Engineering
, 19
, pp. 57
–64
.10.
Liu
, Z. H.
, and Zhu
, W. Q.
, 2007, “Stochastic Averaging of Quasi-Integrable Hamiltonian Systems With Delayed Feedback
,” J. Sound Vib.
0022-460X, 299
, pp. 178
–195
.11.
Elbeyli
, O.
, Sun
, J. Q.
, and Ünal
, G.
, 2005, “A Semi-Discretization Method for Delayed Stochastic Systems
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 10
, pp. 85
–94
.12.
Dodla
, R. R. V.
, Sen
, A.
, and Johnston
, G. L.
, 2003, “Driven Response of Time Delay Coupled Limit Cycle Oscillators
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 8
, pp. 493
–518
.13.
Wedig
, W. V.
, 1990, “Invariant Measures and Lyapunov Exponents for Generalized Parameter Fluctuations
,” Struct. Safety
0167-4730, 8
, pp. 13
–25
.14.
Rajan
, S.
, and Davies
, H. G.
, 1988, “Multiple Time Scaling of the Response of a Duffing Oscillator to Narrow-Band Random Excitation
,” J. Sound Vib.
0022-460X, 123
, pp. 497
–506
.15.
Stratonovich
, R. L.
, 1963, Topics in the Theory of Random Noise
, Gordon and Breach
, New York
.16.
Shinozuka
, M.
, and Jan
, C.-M.
, 1972, “Digital Simulation of Random Processes and Its Applications
,” J. Sound Vib.
0022-460X, 25
, pp. 111
–128
.17.
Zhu
, W. Q.
, 1992, Random Vibration
, Science Press
, Beijing
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.