Abstract

This paper presents the development of a new hyperchaotic system, created by the extension of the established Lü system to the four-dimension. The complex dynamics of this new system are explored through both theoretical analysis and numerical simulations. The study focuses on the system’s dynamic behavior, equilibrium points, Lyapunov exponents, and Poincaré sections, as well as bifurcation diagrams and coexisting attractors to thoroughly characterize its properties. Moreover, two main methods were investigated to control the hyperchaos: linear feedback control and adaptive control. These approaches aim to stabilize the hyperchaotic system at unstable equilibrium points, even when system parameters are either known or unknown. Numerical simulations are performed to illustrate the effectiveness of the proposed controllers.

References

1.
Kyriazis
,
M.
,
1991
, “
Applications of Chaos Theory to the Molecular Biology of Aging
,”
Exp. Gerontol.
,
26
(
6
), pp.
569
572
.10.1016/0531-5565(91)90074-V
2.
Zhang
,
C. X.
, and
Yu
,
S. M.
,
2016
, “
A Novel Methodology for Constructing a Multi-Wing Chaotic and Hyperchaotic System With a Unified Step Function Switching Control
,”
Chin. Phys. B
,
25
(
5
), p.
050503
.10.1088/1674-1056/25/5/050503
3.
Vaidyanathan
,
S.
,
Pham
,
V. T.
, and
Volos
,
C.
, eds.,
2016
,
Adaptive Backstepping Control, Synchronization and Circuit Simulation of a Novel Jerk Chaotic System With a Quartic Nonlinearity
(Studies in Computational Intelligence, Vol. 636), 1st ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
109
135
.
4.
Lin
,
H.
,
Wang
,
C.
,
Yu
,
F.
,
Xu
,
C.
,
Hong
,
Q.
,
Yao
,
W.
, and
Sun
,
Y.
,
2021
, “
An Extremely Simple Multi-Wing Chaotic System: Dynamics Analysis, Encryption Application and Hardware Implementation
,”
IEEE Trans. Ind. Electron.
,
68
(
12
), pp.
12708
12719
.10.1109/TIE.2020.3047012
5.
Miranda
,
R.
, and
Stone
,
E.
,
1993
, “
The Proto-Lorenz System
,”
Phys. Lett. A
,
178
(
1–2
), pp.
105
113
.10.1016/0375-9601(93)90735-I
6.
Qi
,
G.
,
Chen
,
G.
,
van Wyk
,
M. A.
,
van Wyk
,
B. J.
, and
Zhang
,
Y.
,
2008
, “
A Four-Wing Chaotic Attractor Generated From a New 3-D Quadratic Autonomous System
,”
Chaos, Solitons Fractals
,
38
(
3
), pp.
705
721
.10.1016/j.chaos.2007.01.029
7.
Lai
,
Q.
,
Guan
,
Z. H.
,
Wu
,
Y.
,
Liu
,
F.
, and
Zhang
,
D. X.
,
2013
, “
Generation of Multi-Wing Chaotic Attractors From a Lorenz-Like System
,”
Int. J. Bifurcation Chaos
,
23
(
9
), p.
1350152
.10.1142/S0218127413501526
8.
Wei
,
Z. F.
, and
Huang
,
Y.
,
2016
, “
A Novel Multi-Wing Chaotic System and Circuit Simulation
,”
Int. J. Multimedia Ubiquitous Eng.
,
11
(
7
), pp.
385
390
.10.14257/ijmue.2016.11.7.38
9.
Huang
,
Y.
,
2016
, “
A Novel Method for Constructing Grid Multi-Wing Butterfly Chaotic Attractors Via Nonlinear Coupling Control
,”
Electr. Comput. Eng.
,
2016
, pp.
1
9
.10.1155/2016/9143989
10.
Huang
,
L.
,
Zhang
,
Z.
,
Xiang
,
J.
, and
Wang
,
S.
,
2019
, “
A New 4D Chaotic System With Two-Wing, Four-Wing, and Coexisting Attractors and Its Circuit Simulation
,”
Complexity
,
2019
(
1701
), p.
5803506
.10.1155/2019/5803506
11.
Yu
,
B.
, and
Hu
,
G.
,
2010
, “
Constructing Multiwing Hyperchaotic Attractors
,”
Int. J. Bifurcation Chaos
,
20
(
3
), pp.
727
734
.10.1142/S0218127410026010
12.
Ma
,
J.
,
Chen
,
Z.
,
Wang
,
Z.
, and
Zhang
,
Q.
,
2015
, “
A Four-Wing Hyper-Chaotic Attractor Generated From a 4-D Memristive System With a Line Equilibrium
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1275
1288
.10.1007/s11071-015-2067-4
13.
Rössler
,
O. E.
,
1979
, “
An Equation for Hyperchaos
,”
Phys. Lett. A
,
71
(
2–3
), pp.
155
157
.10.1016/0375-9601(79)90150-6
14.
Vaidyanathan
,
S.
,
Volos
,
C.
, and
Pham
,
V. T.
,
2014
, “
Hyperchaos, Adaptive Control and Synchronization of a Novel 5-D Hyperchaotic System With Three Positive Lyapunov Exponents and Its Spice Implementation
,”
Arch. Control Sci.
,
24
(
4
), pp.
409
446
.10.2478/acsc-2014-0023
15.
Peng
,
Z. P.
,
Wang
,
C. H.
,
Yuan
,
L.
, and
Xiao-Wen
,
L.
,
2014
, “
A Novel Four-Dimensional Multi-Wing Hyper-Chaotic Attractor and Its Application in Image Encryption
,”
Acta Phys. Sin.
,
63
(
24
), p.
2050142
.10.7498/aps.63.240506
16.
Rajagopal
,
K.
,
Jafari
,
S.
,
Karthikeyan
,
A.
,
Srinivasan
,
A.
, and
Ayele
,
B.
,
2018
, “
Hyperchaotic Memcapacitor Oscillator With Infinite Equilibria and Coexisting Attractors
,”
Circuits Syst. Signal Process.
,
37
(
9
), pp.
3702
3724
.10.1007/s00034-018-0750-7
17.
Singh
,
J. P.
,
Roy
,
B. K.
, and
Wei
,
Z.
,
2018
, “
A New Four-Dimensional Chaotic System With First Lyapunov Exponent of About 22, Hyperbolic Curve and Circular Paraboloid Types of Equilibria and Its Switching Synchronization by an Adaptive Global Integral Sliding Mode Control
,”
Chin. Phys. B
,
27
(
4
), p.
040503
.10.1088/1674-1056/27/4/040503
18.
Al-Khedhairi
,
A.
,
Elsonbaty
,
A.
,
Kader
,
A. H. A.
, and
Elsadany
,
A. A.
,
2019
, “
Dynamic Analysis and Circuit Implementation of a New 4D Lorenz-Type Hyperchaotic System
,”
Math. Probl. Eng.
,
2019
(
9
), pp.
1
17
.10.1155/2019/6581586
19.
Fu
,
S.
,
Cheng
,
X. F.
, and
Liu
,
J.
,
2023
, “
Dynamics, Circuit Design, Feedback Control of a New Hyperchaotic System and Its Application in Audio Encryption
,”
Sci. Rep.
,
13
(
1
), p. 19385.10.1038/s41598-023-46161-5
20.
Ghettout
,
Y.
,
Meddour
,
L.
,
Hamaizia
,
T.
, and
Ouahabi
,
R.
,
2024
, “
Dynamic Analysis of a New Hyperchaotic System With Infinite Equilibria and Its Synchronization
,”
Nonlinear Dyn. Syst. Theory
,
24
(
2
), pp.
147
158
.https://www.e-ndst.kiev.ua/v24n2/4(92)a
21.
Zlatkovic
,
B. M.
, and
Samardzic
,
B.
,
2021
, “
Control of Spatial Hyperchaos in Higher Order Mimo Cascade Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
6
), p.
061006
.10.1115/1.4050872
22.
Gao
,
T.
,
Chen
,
Z.
,
Yuan
,
Z.
, and
Chen
,
G.
,
2006
, “
A Hyperchaos Generated From Chen’s System
,”
Int. J. Mod. Phys. C
,
17
(
4
), pp.
471
478
.10.1142/S0129183106008625
23.
Chen
,
Z.
,
Yang
,
Y.
,
Qi
,
G.
, and
Yuan
,
Z.
,
2007
, “
A Novel Hyperchaos System Only With One Equilibrium
,”
Phys. Lett. A
,
360
(
6
), pp.
696
701
.10.1016/j.physleta.2006.08.085
24.
Yang
,
Q.
,
Zhang
,
K.
, and
Chen
,
G.
,
2009
, “
Hyperchaotic Attractors From a Linearly Controlled Lorenz System
,”
Nonlinear Anal.: Real World Appl.
,
10
(
3
), pp.
1601
1617
.10.1016/j.nonrwa.2008.02.008
25.
Xu
,
J.
,
Cai
,
G.
, and
Zheng
,
S.
,
2009
, “
A Novel Hyperchaotic System and Its Control
,”
J. Uncertain Syst.
,
3
(
2
), pp.
137
144
.https://www.researchgate.net/publication/238071912_A_Novel_Hyperchaotic_System_and_Its_Control
26.
Hu
,
G.
,
2009
, “
Generating Hyperchaotic Attractors With Three Positive Lyapunov Exponents Via State Feedback Control
,”
Int. J. Bifurcation Chaos
,
19
(
2
), pp.
651
660
.10.1142/S0218127409023275
27.
Shu
,
Y.
,
Zhang
,
F.
, and
Mu
,
C.
,
2015
, “
Dynamical Behaviors of a New Hyperchaotic System
,”
Math. Methods Appl. Sci.
,
38
(
15
), pp.
3155
3162
.10.1002/mma.3287
28.
Chen
,
Y.
, and
Yang
,
Q.
,
2015
, “
A New Lorenz-Type Hyperchaotic System With a Curve of Equilibria
,”
Math. Comput. Simul.
,
112
, pp.
40
55
.10.1016/j.matcom.2014.11.006
29.
Wang
,
H.
, and
Li
,
X.
,
2018
, “
A Novel Hyperchaotic System With Infinitely Many Heteroclinic Orbits Coined
,”
Chaos, Solitons Fractals
,
106
, pp.
5
15
.10.1016/j.chaos.2017.10.029
30.
Singh
,
J. P.
,
Roy
,
B. K.
, and
Jafari
,
S.
,
2018
, “
New Family of 4-D Hyperchaotic and Chaotic Systems With Quadric Surfaces of Equilibria
,”
Chaos, Solitons Fractals
,
106
, pp.
243
257
.10.1016/j.chaos.2017.11.030
31.
Rezzag
,
S.
, and
Zhang
,
F.
,
2022
, “
On the Dynamics of New 4D and 6D Hyperchaotic Systems
,”
Mathematics
,
10
(
19
), p.
3668
.10.3390/math10193668
32.
Lassoued
,
A.
, and
Boubaker
,
O.
,
2016
, “
On New Chaotic and Hyperchaotic Systems: A Literature Survey
,”
Nonlinear Anal.: Modell. Control
,
21
(
6
), pp.
770
789
.10.15388/NA.2016.6.3
33.
Zheng
,
S.
,
Dong
,
G.
, and
Bi
,
Q.
,
2010
, “
A New Hyperchaotic System and Its Synchronization
,”
Appl. Math. Comput.
,
215
(
9
), pp.
3192
3200
.10.1016/j.amc.2009.09.060
34.
Wang
,
X.
, and
Wang
,
M.
,
2008
, “
A Hyperchaos Generated From the Lorenz System
,”
Phys. A
,
387
(
14
), pp.
3751
3758
.10.1016/j.physa.2008.02.020
35.
Pang
,
S.
, and
Liu
,
Y.
,
2011
, “
A New Hyperchaotic System From the Lü System and Its Control
,”
J. Comput. Appl. Math.
,
235
(
8
), pp.
2775
2789
.10.1016/j.cam.2010.11.029
36.
Li
,
Y.
,
Tang
,
W. K. S.
, and
Chen
,
G.
,
2005
, “
Generating Hyperchaos Via State Feedback Control
,”
Int. J. Bifurcation Chaos
,
15
(
10
), pp.
3367
3375
.10.1142/S0218127405013988
37.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
38.
Vaidyanathan
,
S.
,
2010
, “
Output Regulation of the Lorenz Attractor
,”
Far East J. Math. Sci.
,
42
(
2
), pp.
289
299
.https://www.pphmj.com/abstract/5135.htm
39.
Li
,
R. H.
,
Chen
,
W. S.
, and
Li
,
S.
,
2013
, “
Finite-Time Stabilization for Hyper-Chaotic Lorenz System Families Via Adaptive Control
,”
Appl. Math. Modell.
,
37
(
4
), pp.
1966
1972
.10.1016/j.apm.2012.05.004
40.
Yang
,
C. C.
,
2014
, “
Adaptive Single Input Control for Synchronization of a 4D Lorenz–Stenflo Chaotic System
,”
Arab. J. Sci. Eng.
,
39
(
3
), pp.
2413
2426
.10.1007/s13369-013-0768-x
41.
Chen
,
G.
,
2011
, “
A Simple Adaptive Feedback Control Method for Chaos and Hyper-Chaos Control
,”
Appl. Math. Comput.
,
217
(
17
), pp.
7258
7264
.10.1016/j.amc.2011.02.017
42.
Zhou
,
W.
,
Pan
,
L.
,
Li
,
Z.
, and
Halang
,
W.
,
2009
, “
Non-Linear Feedback Control of a Novel Chaotic System
,”
Int. J. Control Autom. Syst.
,
7
(
6
), pp.
939
944
.10.1007/s12555-009-0610-0
43.
Cui
,
N.
, and
Li
,
J.
,
2023
, “
A New 4D Hyperchaotic System and Its Control
,”
AIMS Math.
,
8
(
1
), pp.
905
923
.10.3934/math.2023044
44.
Kundu
,
P. K.
, and
Chatterjee
,
S.
,
2023
, “
Nonlinear Feedback Synthesis and Control of Periodic, Quasiperiodic, Chaotic and Hyperchaotic Oscillations in Mechanical Systems
,”
Nonlinear Dyn.
,
111
(
12
), pp.
11559
11591
.10.1007/s11071-023-08402-0
45.
,
J.
, and
Chen
,
G.
,
2002
, “
A New Chaotic Attractor Coined
,”
Int. J. Bifurcation Chaos
,
12
(
3
), pp.
659
661
.10.1142/S0218127402004620
You do not currently have access to this content.