Abstract

Delay-based controllers have been recently revisited over proportional-integral-derivative (PID) controllers, with promising analytical tuning formulae and capabilities to effectively control plants with noisy measurements even without low-pass filters. One such controller is the integral retarded (IR) controller, which utilizes an intentional delay to reduce actuator chattering against noisy measurements while its integral part achieves zero steady-state error for set-point regulation of Type-0 open-loop systems. However, measurements can be unintentionally delayed in many applications. The integral retarded framework for such cases has not been studied in the literature. Here, we provide new analytical tuning rules of the controller in such cases, as well as validations through simulations and a direct current (DC) motor velocity control hardware experiment.

References

1.
Villafuerte
,
R.
,
Mondié
,
S.
, and
Garrido
,
R.
,
2013
, “
Tuning of Proportional Retarded Controllers: Theory and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
983
990
.10.1109/TCST.2012.2195664
2.
Ramírez
,
A.
,
Mondié
,
S.
,
Garrido
,
R.
, and
Sipahi
,
R.
,
2016
, “
Design of Proportional-Integral-Retarded (PIR) Controllers for Second-Order LTI Systems
,”
IEEE Trans. Autom. Control
,
61
(
6
), pp.
1688
1693
.10.1109/TAC.2015.2478130
3.
Suh
,
I. H.
, and
Bien
,
Z.
,
1979
, “
Proportional Minus Delay Controller
,”
IEEE Trans. Autom. Control
,
24
(
2
), pp.
370
372
.10.1109/TAC.1979.1102024
4.
Boussaada
,
I.
, and
Niculescu
,
S.-I.
,
2018
, “
On the Dominancy of Multiple Spectral Values for Time-Delay Systems With Applications
,”
IFAC-PapersOnLine
,
51
(
14
), pp.
55
60
.10.1016/j.ifacol.2018.07.198
5.
Ramírez
,
A.
, and
Sipahi
,
R.
,
2019
, “
Multiple Intentional Delays Can Facilitate Fast Consensus and Noise Reduction in a Multiagent System
,”
IEEE Trans. Cybern.
,
49
(
4
), pp.
1224
1235
.10.1109/TCYB.2018.2798163
6.
Ramírez
,
A.
,
Garrido
,
R.
, and
Mondié
,
S.
,
2015
, “
Velocity Control of Servo Systems Using an Integral Retarded Algorithm
,”
ISA Trans.
,
58
, pp.
357
366
.10.1016/j.isatra.2015.04.008
7.
Zhong
,
Q.-C.
, and
Li
,
H.-X.
,
2002
, “
A Delay-Type PID Controller
,”
IFAC Proc. Vol.
,
35
(
1
), pp.
265
270
.10.3182/20020721-6-ES-1901.00125
8.
Fan
,
H.
,
Ramírez
,
A.
,
Mondié
,
S.
, and
Sipahi
,
R.
,
2023
, “
Proportional-Retarded Controller Design for Single-Integrator Dynamics Against Unintentional Delays
,”
IEEE Control Syst. Lett.
,
7
, pp.
514
519
.10.1109/LCSYS.2022.3193275
9.
Ogata
,
K.
,
2010
,
Modern Control Engineering
,
Pearson Prentice Hall
,
Hoboken, NJ
.
10.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Scientific & Technical
,
London
.
11.
Hale
,
J. K.
, and
Lunel
,
S. M. V.
,
1993
,
Introduction to Functional Differential Equations
,
Springer-Verlag
,
New York
.
12.
Datko
,
R. F.
,
1978
, “
A Procedure for Determination of the Exponential Stability of Certain Differential-Difference Equations
,”
Q. Appl. Math.
,
36
(
3
), pp.
279
292
.10.1090/qam/508772
13.
Michiels
,
W.
, and
Niculescu
,
S.-I.
,
2007
,
Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach
,
Siam
,
Philadelphia, PA
.
14.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2009
, “
TRACE-DDE: A Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations
,”
Topics in Time Delay Systems
,
J. J.
Loiseau
,
W.
Michiels
,
S.-I.
Niculescu
, and
R.
Sipahi
, eds.,
Springer
,
Berlin Heidelberg
, pp.
145
155
.
15.
Zhang
,
G.
,
Zhang
,
X.
, and
Guan
,
W.
,
2014
, “
Stability Analysis and Design of Integrating Unstable Delay Processes Using the Mirror-Mapping Technique
,”
J. Process Control
,
24
(
7
), pp.
1038
1045
.10.1016/j.jprocont.2014.05.004
16.
Fan
,
H.
,
Ramirez
,
A.
,
Mondie
,
S.
, and
Sipahi
,
R.
,
2024
, “
DC Motor Velocity Control With Integral Retarded Controller Under Unintentional Delay
,”
ASME
Paper No. DETC2023-116814.10.1115/DETC2023-116814
You do not currently have access to this content.