Abstract

Following the performance and force limitation method of the ISO/TS 15066 standard, safety of a human–robot collaboration task is assessed for critical situations assuming quasi-static impact. To this end, impact forces and pressures are experimentally measured and compared with limit values specified by ISO/TS 15066. Consequently, such a safety assessment must be repeated whenever something changes in the collaborative workspace or the task, which severely limits the flexibility of collaborative systems. To overcome this problem, in this paper, a physics-guided machine learning (ML) method for prediction of peak impact forces, within predefined modification dimensions of collaborative applications, is proposed. Along with a pose-dependent linearized model, an ensemble of boosted decision tree (BDT) in combination with a feed-forward neural network (NN) is trained with peak impact forces measured at a UR10e robot covering the range of interest. A generic pick and place task with two modification dimensions is considered as an example of the presented methodology. The method yields the maximal safe impact velocity in the collaborative workspace.

References

1.
Ajoudani
,
A.
,
Zanchettin
,
A. M.
,
Ivaldi
,
S.
,
Albu-Schäffer
,
A.
,
Kosuge
,
K.
, and
Khatib
,
O.
,
2018
, “
Progress and Prospects of the Human–Robot Collaboration
,”
Auton. Rob.
,
42
(
5
), pp.
957
975
.10.1007/s10514-017-9677-2
2.
ISO/TS
,
2016
, “
Technical Specification: Robots and Robotic Devices: Collaborative Robots
,” The International Organization for Standardization, The International Organization for Standardization Technical Specification, Geneva, Switzerland, Standard No. ISO/TS 15066:2016.
3.
Chemweno
,
P.
,
Pintelon
,
L.
, and
Decre
,
W.
,
2020
, “
Orienting Safety Assurance With Outcomes of Hazard Analysis and Risk Assessment: A Review of the ISO 15066 Standard for Collaborative Robot Systems
,”
Saf. Sci.
,
129
, p.
104832
.10.1016/j.ssci.2020.104832
4.
Schlotzhauer
,
A.
,
Kaiser
,
L.
,
Wachter
,
J.
,
Brandstötter
,
M.
, and
Hofbaur
,
M.
,
2019
, “
On the Trustability of the Safety Measures of Collaborative Robots: 2D Collision-Force-Map of a Sensitive Manipulator for Safe HRC
,” IEEE International Conference on Automation Science and Engineering (
CASE
), Vancouver, BC, Canada, Aug. 22–26, pp.
1676
1683
.10.1109/COASE.2019.8842991
5.
Rosenstrauch
,
M. J.
, and
Krüger
,
J.
,
2017
, “
Safe Human-Robot-Collaboration-Introduction and Experiment Using ISO/TS 15066
,” 2017 Third International Conference on Control, Automation and Robotics (
ICCAR
), Nagoya, Japan, Apr. 24–26, pp.
740
744
.10.1109/ICCAR.2017.7942795
6.
Mansfeld
,
N.
,
Hamad
,
M.
,
Becker
,
M.
,
Marin
,
A. G.
, and
Haddadin
,
S.
,
2018
, “
Safety Map: A Unified Representation for Biomechanics Impact Data and Robot Instantaneous Dynamic Properties
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1880
1887
.10.1109/LRA.2018.2801477
7.
Hamad
,
M.
,
Mansfeld
,
N.
,
Abdolshah
,
S.
, and
Haddadin
,
S.
,
2019
, “
The Role of Robot Payload in the Safety Map Framework
,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Macau, China, Nov. 3–8, pp.
195
200
.10.1109/IROS40897.2019.8968022
8.
Kovincic
,
N.
,
Gattringer
,
H.
,
Müller
,
A.
, and
Brandstötter
,
M.
,
2020
, “
A Boosted Decision Tree Approach for a Safe Human-Robot Collaboration in Quasi-Static Impact Situations
,”
Advances in Service and Industrial Robotics. RAAD 2020
(Mechanisms and Machine Science, Vol.
84
),
S.
Zeghloul
,
M.
Laribi
, and
J.
Sandoval Arevalo
, eds.,
Springer
,
Cham, Switzerland
, pp.
235
244
.
9.
Brandstötter
,
M.
,
Komenda
,
T.
,
Ranz
,
F.
,
Wedenig
,
P.
,
Gattringer
,
H.
,
Kaiser
,
L.
,
Breitenhuber
,
G.
,
Schlotzhauer
,
A.
,
Müller
,
A.
, and
Hofbaur
,
M.
,
2020
, “
Versatile Collaborative Robot Applications Through Safety-Rated Modification Limits
,”
Advances in Service and Industrial Robotics
,
K.
Berns
and
D.
Görges
, eds.,
Springer
,
Cham
, Switzerland, pp.
438
446
.
10.
Kovincic
,
N.
,
Gattringer
,
H.
,
Müller
,
A.
,
Weyrer
,
M.
,
Schlotzhauer
,
A.
,
Kaiser
,
L.
, and
Brandstötter
,
M.
,
2019
, “
A Model-Based Strategy for Safety Assessment of a Robot Arm Interacting With Humans
,”
PAMM
,
19
(
1
), p. e201900247.10.1002/pamm.201900247
11.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
CRC Press, Boca Raton
.
12.
Kovincic
,
N.
,
Müller
,
A.
,
Gattringer
,
H.
,
Weyrer
,
M.
,
Schlotzhauer
,
A.
, and
Brandstötter
,
M.
,
2019
, “
Dynamic Parameter Identification of the Universal Robots UR5
,”
Proceedings of the Joint ARW & OAGM Workshop 2019
, Steyr, Austria, May 9–10, pp.
44
53
.10.3217/978-3-85125-663-5-07
13.
Karpatne
,
A.
,
Atluri
,
G.
,
Faghmous
,
J. H.
,
Steinbach
,
M.
,
Banerjee
,
A.
,
Ganguly
,
A.
,
Shekhar
,
S.
,
Samatova
,
N.
, and
Kumar
,
V.
,
2017
, “
Theory-Guided Data Science: A New Paradigm for Scientific Discovery From Data
,”
IEEE Trans. Knowl. Data Eng.
,
29
(
10
), pp.
2318
2331
.10.1109/TKDE.2017.2720168
14.
Forssell
,
U.
, and
Lindskog
,
P.
,
1997
, “
Combining Semi-Physical and Neural Network Modeling: An Example of Its Usefulness
,”
IFAC Proc.
,
30
(
11
), pp.
767
770
.10.1016/S1474-6670(17)42938-7
15.
Karpatne
,
A.
,
Kannan
,
R.
, and
Kumar
,
V.
,
2022
,
Knowledge Guided Machine Learning: Accelerating Discovery Using Scientific Knowledge and Data
,
CRC Press
, Boca Raton
16.
Stewart
,
R.
, and
Ermon
,
S.
,
2017
, “
Label-Free Supervision of Neural Networks With Physics and Domain Knowledge
,”
31st AAAI Conference on Artificial Intelligence
, San Francisco, CA, Feb. 4–9, pp.
2576
2582
.https://cdn.aaai.org/ojs/10934/10934-13-14462-1-2-20201228.pdf
17.
Ren
,
H.
,
Stewart
,
R.
,
Song
,
J.
,
Kuleshov
,
V.
, and
Ermon
,
S.
,
2018
, “
Learning With Weak Supervision From Physics and Data-Driven Constraints
,”
AI Mag.
,
39
(
1
), pp.
27
38
.10.1609/aimag.v39i1.2776
18.
Jia
,
X.
,
Willard
,
J.
,
Karpatne
,
A.
,
Read
,
J.
,
Zwart
,
J.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2019
, “
Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles
,”
2019 SIAM International Conference on Data Mining
, Calgary, AB, Canada,
May 2–4
, pp.
558
566
.https://jzwart.github.io/files/Jia_2019_PGRNN.pdf
19.
Hoo
,
K. A.
,
Sinzinger
,
E. D.
, and
Piovoso
,
M. J.
,
2002
, “
Improvements in the Predictive Capability of Neural Networks
,”
J. Process Control
,
12
(
1
), pp.
193
202
.10.1016/S0959-1524(01)00007-5
20.
Muralidhar
,
N.
,
Bu
,
J.
,
Cao
,
Z.
,
He
,
L.
,
Ramakrishnan
,
N.
,
Tafti
,
D.
, and
Karpatne
,
A.
,
2019
, “
Physics-Guided Design and Learning of Neural Networks for Predicting Drag Force on Particle Suspensions in Moving Fluids
,” preprint arXiv:1911.04240.
21.
Géron
,
A.
,
2019
,
Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
,
O'Reilly Media
, Sebastopol, CA.
22.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals Syst.
,
2
(
4
), pp.
303
314
.10.1007/BF02551274
23.
Schapire
,
R. E.
,
1990
, “
The Strength of Weak Learnability
,”
Mach. Learn.
,
5
(
2
), pp.
197
227
.10.1007/BF00116037
24.
Schapire
,
R.
, and
Freund
,
Y.
,
2012
,
Boosting: Foundations and Algorithms
(Adaptive Computation and Machine Learning),
MIT Press
, Cambridge, MA.
25.
Boné
,
R.
,
Assaad
,
M.
, and
Crucianu
,
M.
,
2003
, “
Boosting Recurrent Neural Networks for Time Series Prediction
,”
Artificial Neural Nets and Genetic Algorithms
,
Springer
, Berlin, pp.
18
22
.
26.
Kégl
,
B.
,
2003
, “
Robust Regression by Boosting the Median
,”
Learning Theory and Kernel Machines
,
Springer
, Berlin, Heidelberg, pp.
258
272
.
27.
Tong
,
H.-H.
,
Li
,
C.-R.
, and
He
,
J.-R.
,
2004
, “
Boosting Feed-Forward Neural Network for Internet Traffic Prediction
,” Proceedings of 2004 International Conference on Machine Learning and Cybernetics (
IEEE Cat. No. 04EX826
), Shanghai, China,
Aug. 26–29
, pp.
3129
3134
.10.1109/ICMLC.2004.1378572
28.
Tong
,
H.
,
Li
,
C.
, and
He
,
J.
,
2004
, “
A Boosting-Based Framework for Self-Similar and Non-Linear Internet Traffic Prediction
,”
International Symposium on Neural Networks
, Dalian, China, Aug. 19–21,
pp.
931
936
.10.1007/978-3-540-28648-6_148
29.
Tong
,
H.
,
Li
,
C.
,
He
,
J.
, and
Chen
,
Y.
,
2005
, “
Internet Traffic Prediction by W-Boost: Classification and Regression
,”
International Symposium on Neural Networks
, Chongqing, China, May 30–June 1,
pp.
397
402
.
30.
MacKay
,
D. J.
,
1992
, “
Bayesian Interpolation
,”
Neural Comput.
,
4
(
3
), pp.
415
447
.10.1162/neco.1992.4.3.415
31.
Foresee
,
F. D.
, and
Hagan
,
M. T.
,
1997
, “
Gauss-Newton Approximation to Bayesian Learning
,” Proceedings of International Conference on Neural Networks (
ICNN'97
), Houston, TX, June 9–12,
pp.
1930
1935
.10.1109/ICNN.1997.614194
32.
Burden
,
F.
, and
Winkler
,
D.
,
2008
, “
Bayesian Regularization of Neural Networks
,”
Artificial Neural Networks
,
Springer
, Berlin, Heidelberg, pp.
23
42
.
You do not currently have access to this content.