Abstract

Dynamic response of a gear pair subjected to input and output torque or velocity fluctuations is examined analytically. Such motions are commonly observed in various powertrain systems and identified as gear rattle or hammering motions with severe noise and durability consequences. A reduced-order torsional model is proposed along with a computationally efficient piecewise-linear solution methodology to characterize the system response including its sensitivity to excitation parameters. Validity of the proposed model is established through comparisons of its predictions to measurements from a gear rattle experimental setup. A wide array of nonlinear behavior is demonstrated through presentation of periodic and chaotic responses in the forms of phase plots, Poincaré maps, and bifurcation diagrams. The severity of the resultant impacts on the noise outcome is also assessed through a rattle severity index defined by using the impact velocities.

References

1.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1995
, “
Steady State Forced Response of a Mechanical Oscillator With Combined Parametric Excitation and Clearance Type Non-Linearity
,”
J. Sound Vib.
,
185
(
5
), pp.
743
765
.10.1006/jsvi.1995.0416
2.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1996
, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System With Clearance
,”
J. Sound Vib.
,
194
(
3
), pp.
317
336
.10.1006/jsvi.1996.0361
3.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1999
, “
Effect of Involute Tip Relief on Dynamic Response of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
313
315
.10.1115/1.2829460
4.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.10.1115/1.2787276
5.
Ma
,
Q.
, and
Kahraman
,
A.
,
2006
, “
Subharmonic Resonances of a Mechanical Oscillator With Periodically Time-Varying, Piecewise Non-Linear Stiffness
,”
J. Sound Vib.
,
294
(
3
), pp.
624
636
.10.1016/j.jsv.2005.11.026
6.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Period One
,”
J. Sound Vib.
,
279
(
1–2
), pp.
417
451
.10.1016/j.jsv.2003.11.029
7.
Tamminana
,
V. K.
,
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2007
, “
A Study of the Relationship Between the Dynamic Factors and the Dynamic Transmission Error of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
75
84
.10.1115/1.2359470
8.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-Varying Mesh Stiffness and Clearance Non-Linearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.10.1016/0022-460X(91)90527-Q
9.
Seaman
,
R.
,
Johnson
,
C.
, and
Hamilton
,
R.
,
1984
, “
Component Inertial Effects on Transmission Design
,”
SAE
Paper No. 841686.10.4271/841686
10.
Zhao
,
H. A.
, and
Reinhart
,
T. E.
,
1999
, “The Influence of Diesel Engine Architecture on Noise Levels,”
SAE
Paper No. 1999-01-1747.10.4271/1999-01-1747
11.
Donmez
,
A.
, and
Kahraman
,
A.
,
2021
, “
Experimental and Theoretical Investigation of Vibro-Impact Motions of a Gear Pair Subjected to Torque Fluctuations to Define a Rattle Noise Severity Index
,”
ASME J. Vib. Acoust.
(in press).10.1115/1.4053264
12.
Singh
,
R.
,
Xie
,
H.
, and
Comparin
,
R. J.
,
1989
, “
Analysis of Automotive Neutral Gear Rattle
,”
J. Sound Vib.
,
131
(
2
), pp.
177
196
.10.1016/0022-460X(89)90485-9
13.
Sakai
,
T.
,
Doi
,
Y.
,
Yamamoto
,
K.
,
Ogasawara
,
T.
, and
Narita
,
M.
,
1981
, “
Theoretical and Experimental Analysis of Rattling Noise of Automotive Gearbox
,”
SAE
Paper No. 810773.10.4271/810773
14.
Doĝan
,
S. N.
,
Ryborz
,
J.
, and
Bertsche
,
B.
,
2006
, “
Design of Low-Noise Manual Automotive Transmissions
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
220
(
2
), pp.
79
95
.10.1243/14644193JMBD10
15.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
,
2020
, “
Investigation of Gear Rattle Noise Including Visualization of Vibro-Impact Regimes
,”
J. Sound Vib.
,
467
, p.
115026
.10.1016/j.jsv.2019.115026
16.
Halse
,
C. K.
,
Wilson
,
R. E.
,
Di Bernardo
,
M.
,
Homer
,
M. E.
,
Technology
,
R.
, and
House
,
R.
,
2007
, “
Coexisting Solutions and Bifurcations in Mechanical Oscillators With Backlash
,”
J. Sound Vib.
,
305
(
4–5
), pp.
854
885
.10.1016/j.jsv.2007.05.010
17.
Padmanabhan
,
C.
,
Barlow
,
R. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
1995
, “
Computational Issues Associated With Gear Rattle Analysis
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
185
192
.10.1115/1.2826105
18.
Brogliato
,
B.
,
2016
,
Nonsmooth Mechanics: Models, Dynamics and Control
, 3rd ed.,
Springer International Publishing
, Cham,
Switzerland
.
19.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2003
, “
Effect of Smoothening Functions on the Frequency Response of an Oscillator With Clearance Non-Linearity
,”
J. Sound Vib.
,
263
(
3
), pp.
665
678
.10.1016/S0022-460X(02)01469-4
20.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2005
, “
Super- and Sub-Harmonic Response Calculations for a Torsional System With Clearance Nonlinearity Using the Harmonic Balance Method
,”
J. Sound Vib.
,
281
(
3–5
), pp.
965
993
.10.1016/j.jsv.2004.02.039
21.
Comparin
,
R. J.
, and
Singh
,
R.
,
1990
, “
An Analytical Study of Automotive Neutral Gear Rattle
,”
ASME J. Mech. Des.
,
112
(
2
), pp.
237
245
.10.1115/1.2912598
22.
Budd
,
C. J.
, and
Dux
,
F.
,
1994
, “
Intermittency in Impact Oscillators Close to Resonance
,”
Nonlinearity
,
7
(
4
), pp.
1191
1224
.10.1088/0951-7715/7/4/007
23.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
,
1991
, “
Theoretical and Experimental Investigations of Gear-Rattling
,”
Nonlinear Dyn.
,
2
(
5
), pp.
367
387
.10.1007/BF00045670
24.
Pfeiffer
,
F.
, and
Prestl
,
W.
,
1994
, “
Hammering in Diesel-Engine Driveline Systems
,”
Nonlinear Dyn.
,
5
(
4
), pp.
477
492
.10.1007/BF00052455
25.
Pfeiffer
,
F.
, and
Kunert
,
A.
,
1990
, “
Rattling Models From Deterministic to Stochastic Processes
,”
Nonlinear Dyn.
,
1
(
1
), pp.
63
74
.10.1007/BF01857585
26.
Di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
,
Kowalczyk
,
P.
,
Nordmark
,
A. B.
,
Tost
,
G. O.
, and
Piiroinen
,
P. T.
,
2008
, “
Bifurcations in Nonsmooth Dynamical Systems
,”
SIAM Rev.
,
50
(
4
), pp.
629
701
.10.1137/050625060
27.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.10.1016/0022-460X(83)90407-8
28.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.10.1016/0022-460X(91)90592-8
29.
Foale
,
S.
, and
Bishop
,
S. R.
,
1994
, “
Bifurcations in Impact Oscillations
,”
Nonlinear Dyn.
,
6
(
3
), pp.
285
299
.10.1007/BF00053387
30.
Miao
,
P.
,
Li
,
D.
,
Yue
,
Y.
,
Xie
,
J.
, and
Grebogi
,
C.
,
2019
, “
Chaotic Attractor of the Normal Form Map for Grazing Bifurcations of Impact Oscillators
,”
Phys. D: Nonlinear Phenom.
,
398
, pp.
164
170
.10.1016/j.physd.2019.03.007
31.
Chin
,
W.
,
Ott
,
E.
,
Nusse
,
H. E.
, and
Grebogi
,
C.
,
1994
, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
,
50
(
6
), pp.
4427
4444
.10.1103/PhysRevE.50.4427
32.
Fan
,
J.
, and
Yang
,
Z.
,
2018
, “
Analysis of Dynamical Behaviors of a 2-DOF Vibro-Impact System With Dry Friction
,”
Chaos, Solitons Fractals
,
116
, pp.
176
201
.10.1016/j.chaos.2018.08.014
33.
Halse
,
C.
,
Homer
,
M.
, and
Di Bernardo
,
M.
,
2003
, “
C-Bifurcations and Period-Adding in One-Dimensional Piecewise-Smooth Maps
,”
Chaos, Solitons Fractals
,
18
(
5
), pp.
953
976
.10.1016/S0960-0779(03)00066-3
34.
De Souza
,
S. L. T.
,
Caldas
,
I. L.
,
Viana
,
R. L.
, and
Balthazar
,
J. M.
,
2004
, “
Sudden Changes in Chaotic Attractors and Transient Basins in a Model for Rattling in Gearboxes
,”
Chaos, Solitons Fractals
,
21
(
3
), pp.
763
772
.10.1016/j.chaos.2003.12.096
35.
Nordmark
,
A. B.
,
2001
, “
Existence of Periodic Orbits in Grazing Bifurcations of Impacting Mechanical Oscillators
,”
Nonlinearity
,
14
(
6
), pp.
1517
1542
.10.1088/0951-7715/14/6/306
36.
Mason
,
J. F.
,
Piiroinen
,
P. T.
,
Wilson
,
R. E.
, and
Homer
,
M. E.
,
2009
, “
Basins of Attraction in Nonsmooth Models of Gear Rattle
,”
Int. J. Bifurcation Chaos
,
19
(
1
), pp.
203
224
.10.1142/S021812740902283X
37.
Di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems, Theory and Applications
, Springer-Verlag,
London
.
38.
Souza
,
S. L. T. D.
,
2001
, “
Basins of Attraction and Transient Chaos in a Gear-Rattling Model
,”
J. Vib. Control.
,
7
(
6
), pp.
849
862
.10.1177/107754630100700605
39.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2007
, “
An Analysis of the Automotive Driveline Dynamic Behaviour Focusing on the Influence of the Oil Squeeze Effect on the Idle Rattle Phenomenon
,”
J. Sound Vib.
,
303
(
3–5
), pp.
858
872
.10.1016/j.jsv.2007.02.008
40.
Ma
,
Q. L.
,
Kahraman
,
A.
,
Perret-Liaudet
,
J.
, and
Rigaud
,
E.
,
2007
, “
An Investigation of Steady-State Dynamic Response of a Sphere-Plane Contact Interface With Contact Loss
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
249
255
.10.1115/1.2190230
41.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
.10.1016/j.jsv.2013.04.022
42.
Comparin
,
R. J.
, and
Singh
,
R.
,
1990
, “
Frequency Response Characteristics of a Multi-Degree-of-Freedom System With Clearances
,”
J. Sound Vib.
,
142
(
1
), pp.
101
124
.10.1016/0022-460X(90)90585-N
43.
Kahraman
,
A.
,
1992
, “
On the Response of a Preloaded Mechanical Oscillator With a Clearance: Period-Doubling and Chaos
,”
Nonlinear Dyn.
,
3
(
3
), pp.
183
198
.10.1007/BF00122301
44.
Natsiavas
,
S.
,
1989
, “
Periodic Response and Stability of Oscillators With Symmetric Trilinear Restoring Force
,”
J. Sound Vib.
,
134
(
2
), pp.
315
348
.10.1016/0022-460X(89)90654-8
45.
Chapra
,
C. S.
, and
Canale
,
R. P.
,
2010
,
Numerical Methods for Engineers
, 6th ed.,
McGraw-Hill
,
New York
, pp.
132
135
.
46.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031008
.10.1115/1.4042520
47.
Moon
,
F. C.
,
1992
,
Chaotic and Fractal Dynamics
, 1st ed.,
Wiley
,
New York
.
48.
Parker
,
T. S.
, and
Chua
,
L. O.
,
1989
,
Practical Numerical Algorithms for Chaotic Systems
, 1st ed.,
Springer-Verlag
,
New York
.
49.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
50.
Advanced Numerical Solutions Inc.
,
2019
, “
Transmission3D
,”
Advanced Numerical Solutions
,
Hilliard, OH
.
51.
Mason
,
J.
,
Homer
,
M.
, and
Wilson
,
R. E.
,
2007
, “
Mathematical Models of Gear Rattle in Roots Blower Vacuum Pumps
,”
J. Sound Vib.
,
308
(
3–5
), pp.
431
440
.10.1016/j.jsv.2007.03.071
52.
Dankowicz
,
H.
, and
Fotsch
,
E.
,
2017
, “
On the Analysis of Chatter in Mechanical Systems With Impacts
,”
Procedia IUTAM
,
20
, pp.
18
25
.10.1016/j.piutam.2017.03.004
53.
Alzate
,
R.
,
Di Bernardo
,
M.
,
Montanaro
,
U.
, and
Santini
,
S.
,
2007
, “
Experimental and Numerical Verification of Bifurcations and Chaos in Cam-Follower Impacting Systems
,”
Nonlinear Dyn.
,
50
(
3
), pp.
409
429
.10.1007/s11071-006-9188-8
54.
Nordmark
,
A. B.
, and
Piiroinen
,
P. T.
,
2009
, “
Simulation and Stability Analysis of Impacting Systems With Complete Chattering
,”
Nonlinear Dyn.
,
58
(
1–2
), pp.
85
106
.10.1007/s11071-008-9463-y
55.
Alzate
,
R.
,
Piiroinen
,
P. T.
, and
Di Bernardo
,
M.
,
2012
, “
From Complete to Incomplete Chattering: A Novel Route to Chaos in Impacting Cam-Follower Systems
,”
Int. J. Bifurcation Chaos
,
22
(
5
), p.
1250102
.10.1142/S0218127412501027
56.
Luo
,
G.
, and
Xie
,
J.
,
2001
, “
Bifurcations and Chaos in a System With Impacts
,”
Phys. D
,
148
(
3–4
), pp.
183
200
.10.1016/S0167-2789(00)00170-6
You do not currently have access to this content.