Abstract

The frequency-energy plots (FEPs) of two-degree-of-freedom linear structures attached to a piecewise nonlinear energy sink (PNES) are generated here and thoroughly investigated. This study provides the FEP analysis of such systems for further understanding to nonlinear targeted energy transfer (TET) by the PNES. The attached PNES to the considered linear dynamical systems incorporates a symmetrical clearance zone of zero stiffness content where the boundaries of the zone are coupled with the linear structure by linear stiffness elements. In addition, linear viscous damping is selected to be continuous during the PNES mass oscillation. The underlying nonlinear dynamical behavior of the considered structure-PNES systems is investigated by generating the fundamental backbone curves of the FEP and the bifurcated subharmonic resonance branches using numerical continuation methods. Accordingly, interesting dynamical behavior of the nonlinear normal modes (NNMs) of the structure-PNES system on different backbones and subharmonic resonance branches has been observed. In addition, the imposed wavelet transform frequency spectra on the FEPs have revealed that the TET takes place in multiple resonance captures where it is dominated by the nonlinear action of the PNES.

References

1.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
M. D.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer Science & Business Media
, Berlin.
2.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators, Part II Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
3.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators, Part I Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.10.1115/1.1345524
4.
Vakakis
,
A. F.
,
2003
, “
Shock Isolation Through the Use of Nonlinear Energy Sinks
,”
J. Vib. Cont.
,
9
(
1–2
), pp.
79
93
.10.1177/107754603030742
5.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Phys. D
,
204
(
1–2
), pp.
41
69
.10.1016/j.physd.2005.03.014
6.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C.-H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling, Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3–5
), pp.
522
551
.10.1016/j.jsv.2006.06.074
7.
Quinn
,
D. D.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1: 1 Resonance Captures: Part I
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1228
1248
.10.1016/j.jsv.2007.10.026
8.
Benacchio
,
S.
,
Malher
,
A.
,
Boisson
,
J.
, and
Touzé
,
C.
,
2016
, “
Design of a Magnetic Vibration Absorber With Tunable Stiffnesses
,”
Nonlinear Dyn.
,
85
(
2
), pp.
893
911
.10.1007/s11071-016-2731-3
9.
Kremer
,
D.
, and
Liu
,
K.
,
2014
, “
A Nonlinear Energy Sink With an Energy Harvester: Transient Responses
,”
J. Sound Vib.
,
333
(
20
), pp.
4859
4880
.10.1016/j.jsv.2014.05.010
10.
Lo Feudo
,
S.
,
Touzé
,
C.
,
Boisson
,
J.
, and
Cumunel
,
G.
,
2019
, “
Nonlinear Magnetic Vibration Absorber for Passive Control of a Multi–Storey Structure
,”
J. Sound Vib.
,
438
, pp.
33
53
.10.1016/j.jsv.2018.09.007
11.
Saeed
,
A. S.
,
Al-Shudeifat
,
M. A.
, and
Vakakis
,
A. F.
,
2019
, “
Rotary-Oscillatory Nonlinear Sink of Robust Performance
,”
Int. J. Non-Linear Mech.
,
117
, p.
103249
.10.1016/j.ijnonlinmec.2019.103249
12.
Saeed
,
A. S.
,
Al-Shudeifat
,
M. A.
,
Cantwell
,
W. J.
, and
Vakakis
,
A. F.
,
2020
, “
Rotary-Impact Nonlinear Energy Sink for Shock Mitigation: Analytical and Numerical Investigations
,”
Arch. Appl. Mech.
,
90
(
3
), pp.
495
521
.10.1007/s00419-019-01622-0
13.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
Al-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.10.1007/s11071-012-0379-1
14.
Al-Shudeifat
,
M. A.
,
Wierschem
,
N. E.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Numerical and Experimental Investigations of a Rotating Nonlinear Energy Sink
,”
Meccanica
,
52
(
4–5
), pp.
763
779
.10.1007/s11012-016-0422-2
15.
Pun
,
D.
, and
Liu
,
Y. B.
,
2000
, “
On the Design of the Piecewise Linear Vibration Absorber
,”
Nonlinear Dyn.
,
22
(
4
), pp.
393
413
.10.1023/A:1008309409223
16.
Gendelman
,
O. V.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
(
1/3
), pp.
237
253
.10.1023/A:1012967003477
17.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.10.1115/1.1368883
18.
Georgiadis
,
F.
,
Vakakis
,
A. F.
,
Mcfarland
,
D. M.
, and
Bergman
,
L.
,
2005
, “
Shock Isolation Through Passive Energy Pumping Caused by Nonsmooth Nonlinearities
,”
Int. J. Bifurcation Chaos
,
15
(
06
), pp.
1989
2001
.10.1142/S0218127405013101
19.
Jazar
,
G. N.
,
Mahinfalah
,
M.
, and
Deshpande
,
S.
,
2007
, “
Design of a Piecewise Linear Vibration Isolator for Jump Avoidance
,”
Proc. Inst. Mech. Eng., Part K J. Multi-Body Dyn.
,
221
(
3
), pp.
441
449
.10.1243/14644193JMBD56
20.
Shui
,
X.
, and
Wang
,
S.
,
2018
, “
Investigation on a Mechanical Vibration Absorber With Tunable Piecewise-Linear Stiffness
,”
Mech. Syst. Signal Process
,
100
(
2018
), pp.
330
343
.10.1016/j.ymssp.2017.05.046
21.
Yao
,
H.
,
Cao
,
Y.
,
Zhang
,
S.
, and
Wen
,
B.
,
2018
, “
A Novel Energy Sink With Piecewise Linear Stiffness
,”
Nonlinear Dyn.
,
94
(
3
), pp.
2265
2275
.10.1007/s11071-018-4488-3
22.
Al-Shudeifat
,
M. A.
,
2019
, “
Nonlinear Energy Sinks With Piecewise-Linear Nonlinearities
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
124501
.10.1115/1.4045052
23.
Yao
,
H.
,
Cao
,
Y.
,
Wang
,
Y.
, and
Wen
,
B.
,
2019
, “
A Tri-Stable Nonlinear Energy Sink With Piecewise Stiffness
,”
J. Sound Vib.
,
463
, p.
114971
.10.1016/j.jsv.2019.114971
24.
Sun
,
M.
,
Hu
,
W. H.
,
Liu
,
J.
, and
Chen
,
J. E.
,
2021
, “
Steady-State Responses of Mechanical System Attached to Non-Smooth Vibration Absorber With Piecewise Damping and Stiffness
,”
Meccanica
,
56
(
2
), p.
275
.10.1007/s11012-020-01288-x
25.
Yao
,
H.
,
Wang
,
Y.
,
Cao
,
Y.
, and
Wen
,
B.
,
2020
, “
Multi-Stable Nonlinear Energy Sink for Rotor System
,”
Int. J. Non-Linear Mech.
,
118
, p.
103273
;.10.1016/j.ijnonlinmec.2019.103273
26.
Yao
,
H.
,
Cao
,
Y.
,
Ding
,
Z.
, and
Wen
,
B.
,
2019
, “
Using Grounded Nonlinear Energy Sinks to Suppress Lateral Vibration in Rotor Systems
,”
Mech. Syst. Signal Process
,
124
, pp.
237
253
.10.1016/j.ymssp.2019.01.054
27.
Zhang
,
K.
,
Hou
,
Y. D.
,
Tian
,
W. X.
,
Zhang
,
Y. P.
,
Su
,
G. H.
, and
Qiu
,
S. Z.
,
2019
, “
Experimental Investigations on Single-Phase Convection and Two-Phase Flow Boiling Heat Transfer in an Inclined Rod Bundle
,”
Appl. Therm. Eng.
,
148
, pp.
340
351
.10.1016/j.applthermaleng.2018.11.067
28.
Fan
,
K.
,
Tan
,
Q.
,
Liu
,
H.
,
Zhang
,
Y.
, and
Cai
,
M.
,
2019
, “
Improved Energy Harvesting From Low-Frequency Small Vibrations Through a Monostable Piezoelectric Energy Harvester
,”
Mech. Syst. Signal Process
,
117
, pp.
594
608
.10.1016/j.ymssp.2018.08.001
29.
Zoka
,
H.
, and
Afsharfard
,
A.
,
2019
, “
Double Stiffness Vibration Suppressor and Energy Harvester: An Experimental Study
,”
Mech. Syst. Signal Process
,
121
, pp.
1
13
.10.1016/j.ymssp.2018.11.020
30.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
31.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
32.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.10.1016/j.jsv.2015.09.033
33.
Tsakirtzis
,
S.
,
Panagopoulos
,
P. N.
,
Kerschen
,
G.
,
Gendelman
,
O. V.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2007
, “
Complex Dynamics and Targeted Energy Transfer in Linear Oscillators Coupled to Multi-Degree-of-Freedom Essentially Nonlinear Attachments
,”
Nonlinear Dyn.
,
48
(
3
), pp.
285
318
.10.1007/s11071-006-9089-x
34.
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Lee
,
Y. S.
,
McFarland
,
M. D.
,
Kowtko
,
J. J.
, and
Bergman
,
L. A.
,
2005
, “
Energy Transfers in a System of Two Coupled Oscillators With Essential Nonlinearity: 1: 1 Resonance Manifold and Transient Bridging Orbits
,”
Nonlinear Dyn.
,
42
(
3
), pp.
283
303
.10.1007/s11071-005-4475-3
35.
Kerschen
,
G.
,
Kowtko
,
J. J.
,
McFarland
,
M. D.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2006
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
285
309
.10.1007/s11071-006-9073-5
36.
Haris
,
A.
,
Alevras
,
P.
,
Mohammadpour
,
M.
,
Theodossiades
,
S.
, and
O' Mahony
,
M.
,
2020
, “
Design and Validation of a Nonlinear Vibration Absorber to Attenuate Torsional Oscillations of Propulsion Systems
,”
Nonlinear Dyn.
,
100
(
1
), pp.
33
49
.10.1007/s11071-020-05502-z
37.
Lee
,
Y. S.
,
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2009
, “
Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments
,”
Phys. D Nonlinear Phenom.
,
238
(
18
), pp.
1868
1896
.10.1016/j.physd.2009.06.013
38.
Al-Shudeifat
,
M. A.
,
2017
, “
Time-Varying Stiffness Method for Extracting the Frequency–Energy Dependence in the Nonlinear Dynamical Systems
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1463
1474
.10.1007/s11071-017-3528-8
39.
Al-Shudeifat
,
M. A.
,
2018
, “
Modal Damping Variations in Nonlinear Dynamical Systems
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2565
2578
.10.1007/s11071-018-4342-7
40.
Singh
,
A.
, and
Moore
,
K. J.
,
2020
, “
Characteristic Nonlinear System Identification of Local Attachments With Clearance Nonlinearities
,”
Nonlinear Dyn.
,
102
(
3
), pp.
1667
1684
.10.1007/s11071-020-06004-8
41.
Tao
,
H.
, and
Gibert
,
J.
,
2019
, “
Periodic Orbits of a Conservative 2-DOF Vibro-Impact System by Piecewise Continuation: Bifurcations and Fractals
,”
Nonlinear Dyn.
,
95
(
4
), pp.
2963
2993
.10.1007/s11071-018-04734-4
42.
Quinn
,
D. D.
,
Hubbard
,
S.
,
Wierschem
,
N.
,
Al-Shudeifat
,
M. A.
,
Ott
,
R. J.
,
Luo
,
J.
,
Spencer
,
B. F.
, Jr
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Equivalent Modal Damping, Stiffening and Energy Exchanges in Multi-Degree-of-Freedom Systems With Strongly Nonlinear Attachments
,”
Proc. Inst. Mech. Eng., Part K J. Multi-Body Dyn.
,
226
(
2
), pp.
122
146
.10.1177/1464419311432671
You do not currently have access to this content.