Abstract

We consider implicit co-simulation and solver-coupling methods, where different subsystems are coupled in time domain in a weak sense. Within such weak coupling approaches, a macro-time grid (communication-time grid) is introduced. Between the macro-time points, the subsystems are integrated independently. The subsystems only exchange information at the macro-time points. To describe the connection between the subsystems, coupling variables have to be defined. For many implicit co-simulation and solver-coupling approaches, an interface-Jacobian (i.e., coupling sensitivities, coupling gradients) is required. The interface-Jacobian describes how certain subsystem state variables at the interface depend on the coupling variables. Concretely, the interface-Jacobian contains partial derivatives of the state variables of the coupling bodies with respect to the coupling variables. Usually, these partial derivatives are calculated numerically by means of a finite difference approach. A calculation of the coupling gradients based on finite differences may entail problems with respect to the proper choice of the perturbation parameters and may therefore cause problems due to ill-conditioning. A second drawback is that additional subsystem integrations with perturbed coupling variables have to be carried out. In this paper, analytical approximation formulas for the interface-Jacobian are derived, which may be used alternatively to numerically calculated gradients based on finite differences. Applying these approximation formulas, numerical problems with ill-conditioning can be circumvented. Moreover, efficiency of the implementation may be increased, since parallel simulations with perturbed coupling variables can be omitted. The derived approximation formulas converge to the exact gradients for small macro-step sizes.

References

1.
Alioli
,
M.
,
Morandini
,
M.
, and
Masarati
,
P.
,
2013
, “
Coupled Multibody-Fluid Dynamics Simulation of Flapping Wings
,”
ASME
Paper No. DETC2013-12198.10.1115/DETC2013-12198
2.
Fancello
,
M.
,
Morandini
,
M.
, and
Masarati
,
P.
,
2014
, “
Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation
,”
Arch. Mech. Eng.
,
61
(
2
), pp.
253
268
.10.2478/meceng-2014-0015
3.
Naya
,
M.
,
Cuadrado
,
J.
,
Dopico
,
D.
, and
Lugris
,
U.
,
2011
, “
An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison With Simplified and Co-Integration Approaches
,”
Arch. Mech. Eng.
,
58
(
2
), pp.
223
243
.
4.
Rodriguez
,
B.
,
Gonzalez
,
F.
,
Naya
,
M. A.
, and
Cuadrado
,
J.
,
2019
, “
A Test Framework for the Co-Simulation of Electric Powertrains and Vehicle Dynamics
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
, Duisburg, Germany, July 15–18.
5.
Negrut
,
D.
,
Melanz
,
D.
,
Mazhar
,
H.
,
Lamb
,
D.
,
Jayakumar
,
P.
, and
Letherwood
,
M.
,
2013
, “
Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain
,”
SAE Int. J. Passenger Cars - Mech. Syst.
,
6
(
1
), pp.
369
381
.10.4271/2013-01-1191
6.
Negrut
,
D.
,
Tasora
,
A.
,
Mazhar
,
H.
,
Heyn
,
T.
, and
Hahn
,
P.
,
2012
, “
Leveraging Parallel Computing in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
95
117
.10.1007/s11044-011-9262-y
7.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.10.1115/1.4027313
8.
Rakhsha
,
M.
,
Kelly
,
C.
,
Olsen
,
N.
,
Serban
,
R.
, and
Negrut
,
D.
,
2020
, “
Multibody Dynamics Versus Fluid Dynamics: Two Perspectives on the Dynamics of Granular Flows
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p.
091009
.10.1115/1.4047237
9.
Rakhsha
,
M.
,
Pazouki
,
A.
,
Serban
,
R.
, and
Negrut
,
D.
,
2019
, “
Using a Half-Implicit Integration Scheme for the SPH-Based Solution of Fluid–Solid Interaction Problems
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
100
122
.10.1016/j.cma.2018.09.027
10.
Gomes
,
C.
,
Thule
,
C.
,
Broman
,
D.
,
Larsen
,
P. G.
, and
Vangheluwe
,
H.
,
2018
, “
Co-Simulation: A Survey
,”
ACM Comput. Surv.
,
51
(
3
), pp.
1
33
.10.1145/3179993
11.
Gomes
,
C.
,
2019
, “
Property Preservation in Co-Simulation
,” Ph.D. dissertation,
University of Antwerp
, Antwerp, Belgium.
12.
Gonzalez
,
F.
,
Gonzalez
,
M.
, and
Cuadrado
,
J.
,
2009
, “
Weak Coupling of Multibody Dynamics and Block Diagram Simulation Tools
,”
ASME
Paper No. DETC2009-86653.10.1115/DETC2009-86653
13.
Gonzalez
,
F.
,
Naya
,
M. A.
,
Luaces
,
A.
, and
Gonzalez
,
M.
,
2011
, “
On the Effect of Multirate Co-Simulation Techniques in the Efficiency and Accuracy of Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
25
(
4
), pp.
461
483
.10.1007/s11044-010-9234-7
14.
Gonzalez
,
F.
,
Gonzalez
,
M.
, and
Mikkola
,
A.
,
2010
, “
Efficient Coupling of Multibody Software With Numerical Computing Environments and Block Diagram Simulators
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
237
253
.10.1007/s11044-010-9199-6
15.
Gonzalez
,
F.
,
Arbatani
,
S.
,
Mohtat
,
A.
, and
Kövecses
,
J.
,
2019
, “
Energy-Leak Monitoring and Correction to Enhance Stability in the Co-Simulation of Mechanical Systems
,”
Mech. Mach. Theory
,
131
, pp.
172
188
.10.1016/j.mechmachtheory.2018.09.007
16.
Peiret
,
A.
,
Gonzalez
,
F.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2018
, “
Multibody System Dynamics Interface Modelling for Stable Multirate Co-Simulation of Multiphysics Systems
,”
Mech. Mach. Theory
,
127
, pp.
52
72
.10.1016/j.mechmachtheory.2018.04.016
17.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2019
, “
Interface Models in Co-Simulation of Nonsmooth Systems
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
, Duisburg, Germany, July 15–18.
18.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2020
, “
Co-Simulation of Multibody Systems With Contact Using Reduced Interface Models
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
4
), p.
041001
.10.1115/1.4046052
19.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
,
Teichmann
,
M.
, and
Enzenhoefer
,
A.
,
2020
, “
Model-Based Coupling for Co-Simulation of Robotic Contact Tasks
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5756
5763
.10.1109/LRA.2020.3010204
20.
Pombo
,
J.
, and
Ambrosio
,
J.
,
2012
, “
Multiple Pantograph Interaction With Catenaries in High-Speed Trains
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041008
.10.1115/1.4006734
21.
Quaranta
,
G.
,
Masarati
,
P.
, and
Mantegazza
,
P.
,
2002
, “
Multibody Analysis of Controlled Aeroelastic Systems on Parallel Computers
,”
Multibody Syst. Dyn.
,
8
(
1
), pp.
71
102
.10.1023/A:1015894729968
22.
Rahikainen
,
J.
,
Gonzalez
,
F.
, and
Naya
,
M. A.
,
2020
, “
An Automated Methodology to Select Functional Co-Simulation Configurations
,”
Multibody Syst. Dyn.
,
48
(
1
), pp.
79
103
.10.1007/s11044-019-09696-y
23.
Rahikainen
,
J.
,
González
,
F.
,
Naya
,
M. A.
,
Sopanen
,
J.
, and
Mikkola
,
A.
,
2020
, “
On the Cosimulation of Multibody Systems and Hydraulic Dynamics
,”
Multibody Syst. Dyn.
,
50
(
2
), pp.
143
167
.10.1007/s11044-020-09727-z
24.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramech.
,
72
, pp.
39
54
.10.1016/j.jterra.2017.04.002
25.
Schweizer
,
B.
,
2019
,
Proceedings of the IUTAM Symposium on Solver-Coupling and Co-Simulation
, Darmstadt, Germany, September 18–20, 2017,
Springer
, Berlin.
26.
Serban
,
R.
,
Melanz
,
D.
,
Li
,
A.
,
Stanciulescu
,
I.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2015
, “
A GPU-Based Preconditioned Newton-Krylov Solver for Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
102
(
9
), pp.
1585
1604
.10.1002/nme.4876
27.
Serban
,
R.
,
Olsen
,
N.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
,
2017
, “
A Co-Simulation Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Terrain Interaction
,”
Proceedings of the NATO AVT-265 Specialists Meeting
, Vilinus, Lithuania, May 12–19, Paper No. 28937.
28.
Serban
,
R.
,
Taylor
,
M.
,
Negrut
,
D.
, and
Tasora
,
A.
,
2019
, “
Chrono: Vehicle: Template-Based Ground Vehicle Modelling and Simulation
,”
Int. J. Veh. Perform.
,
5
(
1
), pp.
18
39
.10.1504/IJVP.2019.097096
29.
Arnold
,
M.
,
Clauss
,
C.
, and
Schierz
,
T.
,
2013
, “
Error Analysis and Error Estimates for Co-Simulation in FMI for Model Exchange and Co-Simulation in V2.0
,”
Arch. Mech. Eng.
,
60
(
1
), pp.
75
94
.10.2478/meceng-2013-0005
30.
Meyer
,
T.
,
Kraft
,
J.
, and
Schweizer
,
B.
,
2021
, “
Co-Simulation: Error Estimation and Macro-Step Size Control
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
4
), p.
041002
.10.1115/1.4048944
31.
Sadjina
,
S.
,
Kyllingstad
,
L. T.
,
Skjong
,
S.
, and
Pedersen
,
E.
,
2017
, “
Energy Conservation and Power Bonds in Co-Simulations: Non-Iterative Adaptive Step Size Control and Error Estimation
,”
Eng. Comput.
,
33
(
3
), pp.
607
620
.10.1007/s00366-016-0492-8
32.
Kraft
,
J.
,
Meyer
,
T.
, and
Schweizer
,
B.
,
2019
, “
Parallel Co-Simulation Approach With Macro-Step Size and Order Control Algorithm
,”
ASME
Paper No. DETC2019-97781.10.1115/DETC2019-97781
33.
Gu
,
B.
, and
Asada
,
H. H.
,
2004
, “
Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
1
), pp.
1
13
.10.1115/1.1648307
34.
Kübler
,
R.
, and
Schiehlen
,
W.
,
2000
, “
Two Methods of Simulator Coupling
,”
Math. Comput. Modell. Dyn. Syst.
,
6
(
2
), pp.
93
113
.10.1076/1387-3954(200006)6:2;1-M;FT093
35.
Meyer
,
T.
,
Li
,
P.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2018
, “
Implicit Co-Simulation Method for Constraint Coupling With Improved Stability Behavior
,”
Multibody Syst. Dyn.
,
44
(
2
), pp.
135
161
.10.1007/s11044-018-9632-9
36.
Schneider
,
F.
,
Burger
,
M.
,
Arnold
,
M.
, and
Simeon
,
B.
,
2017
, “
A New Approach for Force‐Displacement Co‐Simulation Using Kinematic Coupling Constraints
,”
ZAMM - J. Appl. Math. Mech.
,
97
(
9
), pp.
1147
1166
.10.1002/zamm.201500129
37.
Ambrosio
,
J.
,
Pombo
,
J.
,
Rauter
,
F.
, and
Pereira
,
M.
,
2009
, “
A Memory Based Communication in the Co-Simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation
,”
Multibody Dynamics: Computational Methods and Applications
,
C. L.
Bottasso
, ed.,
Springer
, Berlin, pp.
231
252
.
38.
Ambrosio
,
J.
,
Pombo
,
J.
,
Pereira
,
M.
,
Antunes
,
P.
, and
Mosca
,
A.
,
2012
, “
A Computational Procedure for the Dynamic Analysis of the Catenary-Pantograph Interaction in High-Speed Trains
,”
J. Theor. Appl. Mech.
,
50
(
3
), pp.
681
699
.
39.
Cuadrado
,
J.
,
Cardenal
,
J.
,
Morer
,
P.
, and
Bayo
,
E.
,
2000
, “
Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments
,”
Multibody Syst. Dyn.
,
4
(
1
), pp.
55
73
.10.1023/A:1009824327480
40.
Datar
,
M.
,
Stanciulescu
,
I.
, and
Negrut
,
D.
,
2012
, “
A Co-Simulation Environment for High-Fidelity Virtual Prototyping of Vehicle Systems
,”
Int. J. Veh. Syst. Modell. Test.
,
7
(
1
), pp.
54
72
.
41.
D'Silva
,
S.
,
Sundaram
,
P.
, and
Ambrosio
,
J.
,
2006
, “
Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System
,”
SAE Technical Paper No. 2006-01-1058.
42.
Solcia
,
T.
, and
Masarati
,
P.
,
2011
, “
Efficient Multirate Simulation of Complex Multibody Systems Based on Free Software
,”
ASME
Paper No. DETC2011-47306.10.1115/DETC2011-47306
43.
Sicklinger
,
S.
,
Belsky
,
V.
,
Engelmann
,
B.
,
Elmqvist
,
H.
,
Olsson
,
H.
,
Wüchner
,
R.
, and
Bletzinger
,
K. U.
,
2014
, “
Interface Jacobian‐Based Co‐Simulation
,”
Int. J. Numer. Methods Eng.
,
98
(
6
), pp.
418
444
.10.1002/nme.4637
44.
Sicklinger
,
S.
,
2014
, “
Stabilized Co-Simulation of Coupled Problems Including Fields and Signals
,”
Ph.D. thesis
, Technical University Munich.10.13140/2.1.1103.7762
45.
Sicklinger
,
S.
,
Lerch
,
C.
,
Wüchner
,
R.
, and
Bletzinger
,
K. U.
,
2015
, “
Fully Coupled Co-Simulation of a Wind Turbine Emergency Brake Maneuver
,”
J. Wind Eng. Ind. Aerodyn.
,
144
, pp.
134
145
.10.1016/j.jweia.2015.03.021
46.
Bartel
,
A.
,
Brunk
,
M.
,
Günther
,
M.
, and
Schöps
,
S.
,
2013
, “
Dynamic Iteration for Coupled Problems of Electric Circuits and Distributed Devices
,”
SIAM J. Sci. Comput.
,
35
(
2
), pp.
B315
B335
.10.1137/120867111
47.
Lelarasmee
,
E.
,
Ruehli
,
A. E.
, and
Sangiovanni-Vincentelli
,
A. L.
,
1982
, “
The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
1
(
3
), pp.
131
145
.10.1109/TCAD.1982.1270004
48.
Maciejewski
,
M.
,
Garcia
,
I. C.
,
Schöps
,
S.
,
Auchmann
,
B.
,
Bortot
,
L.
,
Prioli
,
M.
, and
Verweij
,
A.
,
2017
, “
Application of the Waveform Relaxation Technique to the Co-Simulation of Power Converter Controller and Electrical Circuit Models
,”
2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)
, Miedzyzdroje, Poland, Aug. 28–31, pp.
837
842
.
49.
Schöps
,
S.
,
2015
, “
Iterative Schemes for Coupled Multiphysical Problems in Electrical Engineering
,”
IFAC-PapersOnLine
,
48
(
1
), pp.
165
167
.10.1016/j.ifacol.2015.05.174
50.
Schweizer
,
B.
, and
Lu
,
D.
,
2015
, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints
,”
Multibody Syst. Dyn.
,
34
(
2
), pp.
129
161
.10.1007/s11044-014-9422-y
51.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Predictor/Corrector Co-Simulation Approaches for Solver Coupling With Algebraic Constraints
,”
ZAMM - J. Appl. Math. Mech.
,
95
(
9
), pp.
911
938
.
52.
Schweizer
,
B.
,
Li
,
P.
, and
Lu
,
D.
,
2015
, “
Implicit Co-Simulation Methods: Stability and Convergence Analysis for Solver Coupling With Algebraic Constraints
,”
ZAMM - J. Appl. Math. Mech.
,
96
(
8
), pp.
986
1012
.
53.
Schweizer
,
B.
,
Lu
,
D.
, and
Li
,
P.
,
2015
, “
Co-Simulation Method for Solver Coupling With Algebraic Constraints Incorporating Relaxation Techniques
,”
Multibody Syst. Dyn.
,
36
(
1
), pp.
1
36
.
54.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Semi-Implicit Co-Simulation Approach for Solver Coupling
,”
Arch. Appl. Mech.
,
84
(
12
), pp.
1739
1769
.10.1007/s00419-014-0883-5
55.
Bastian
,
J.
,
Clauß
,
C.
,
Wolf
,
S.
, and
Schneider
,
P.
,
2011
, “
Master for Co-Simulation Using FMI
,”
Proceedings of the Eighth International Modelica Conference, Technical University Dresden
, Dresden, Germany, Mar. 20–22, Linköping University Electronic Press, Vol.
63
, pp.
115
120
.
56.
Wang
,
J.
,
Ma
,
Z. D.
, and
Hulbert
,
G.
,
2003
, “
A Gluing Algorithm for Distributed Simulation of Multibody Systems
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
159
188
.10.1023/B:NODY.0000014558.70434.b0
57.
De Jalon
,
J. G.
, and
Bayo
,
E.
,
2012
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer Science & Business Media
, New York.
58.
Shabana
,
A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
, Cambridge, UK.
59.
Shabana
,
A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
60.
Schweizer
,
B.
,
Li
,
P.
, and
Lu
,
D.
,
2015
, “
Explicit and Implicit Co-Simulation Methods: Stability and Convergence Analysis for Different Solver Coupling Approaches
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051007
.10.1115/1.4028503
61.
Shampine
,
L. F.
,
1980
, “
Implementation of Implicit Formulas for the Solution of ODEs
,”
SIAM J. Sci. Stat. Comput.
,
1
(
1
), pp.
103
118
.10.1137/0901005
62.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Software (TOMS)
,
31
(
3
), pp.
363
396
.10.1145/1089014.1089020
63.
Tomulik
,
P.
, and
Fra̧Czek
,
J.
,
2011
, “
Simulation of Multibody Systems With the Use of Coupling Techniques: A Case Study
,”
Multibody Syst. Dyn.
,
25
(
2
), pp.
145
165
.10.1007/s11044-010-9206-y
You do not currently have access to this content.