Abstract

This paper describes a finite element approach to the analysis of flexible multibody systems. It is based on the motion formalism that (1) uses configuration and motion to describe the kinematics of flexible multibody systems, (2) recognizes that these are members of the special Euclidean group thereby coupling their displacement and rotation components, and (3) resolves all tensors components in local frames. The goal of this review paper is not to provide an in-depth derivation of all the elements found in typical multibody codes but rather to demonstrate how the motion formalism (1) provides a theoretical framework that unifies the formulation of all structural elements, (2) leads to governing equations of motion that are objective, intrinsic, and present a reduced order of nonlinearity, (3) improves the efficiency of the solution process, and (4) prevents the occurrence of singularities.

References

1.
Schiehlen
,
W. O.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.10.1023/A:1009745432698
2.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University Press
, Cambridge, UK.
3.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Théorie Des Corps Déformables
, 2nd ed.,
A.
Hermann
Fils
,
Paris
.
4.
Naghdi
,
P. M.
,
1972
, “
The Theory of Plates and Shells
,”
Handbuch der Physik
, Vol.
2
,
S.
Flügge
, ed.,
Springer-Verlag
,
Berlin
, pp.
425
640
.
5.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody System: A Finite Element Approach
,
Wiley
,
New York
.
6.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
, Vol.
176
o Solid Mechanics and Its Applications,
Springer Netherlands
,
Dordrecht, The Netherlands
.
7.
Bauchau
,
O. A.
, and
Craig
,
J. I.
,
2009
,
Structural Analysis With Applications to Aerospace Structures
,
Springer
,
Dordrecht, The Netherlands
.
8.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
Z. Angew. Math. Phys.
,
12
, pp.
A69
A77
.
9.
Reissner
,
E.
,
1947
, “
On Bending of Elastic Plates
,”
Q. Appl. Math.
,
5
(
1
), pp.
55
68
.10.1090/qam/20440
10.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates
,”
ASME J. Appl. Mech.
,
18
(
1
), pp.
31
38
.10.1115/1.4010217
11.
Stuelpnagel
,
J.
,
1964
, “
On the Parameterization of the Three-Dimensional Rotation Group
,”
SIAM Rev.
,
6
(
4
), pp.
422
430
.10.1137/1006093
12.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
13.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publications
,
New York
.
14.
McCarthy
,
J. M.
,
1990
,
An Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
15.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
16.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics. Monographs in Computer Science
,
Springer
,
New York
.
17.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms
, Vol
124
of Mechanical Engineering Series,
Springer International Publishing
,
New York
.
18.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.10.1016/j.mechmachtheory.2014.06.014
19.
Müller
,
A.
,
2016
, “
A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body
,”
BIT Numer. Math.
,
56
(
3
), pp.
995
1015
.10.1007/s10543-015-0580-y
20.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Kinematics
,”
Multibody Syst. Dyn.
,
43
(
1
), pp.
37
70
.10.1007/s11044-017-9582-7
21.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi
,
F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
1–4
), pp.
403
413
.10.1016/0045-7949(83)90179-7
22.
Bauchau
,
O. A.
, and
Han
,
S. L.
,
2014
, “
Three-Dimensional Beam Theory for Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041011
.10.1115/1.4025820
23.
Rooney
,
J.
,
1978
, “
A Comparison of Representations of General Spatial Screw Displacement
,”
Environ. Plann. B Plann. Des.
,
5
(
1
), pp.
45
88
.10.1068/b050045
24.
Chevallier
,
D. P.
,
1991
, “
Lie Algebra, Modules, Dual Quaternions and Algebraic Methods in Kinematics
,”
Mech. Mach. Theory
,
26
(
6
), pp.
613
627
.10.1016/0094-114X(91)90043-4
25.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
,
2000
, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
,
4
(
2/3
), pp.
129
193
.10.1023/A:1009830626597
26.
Funda
,
J.
,
Taylor
,
R.
, and
Paul
,
R.
,
1990
, “
On Homogeneous Transforms, Quaternions, and Computational Efficiency
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
382
388
.10.1109/70.56658
27.
Funda
,
J.
, and
Paul
,
R.
,
1990
, “
A Computational Analysis of Screw Transformations in Robotics
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
348
356
.10.1109/70.56653
28.
Wehage
,
R. A.
,
1984
, “
Quaternions and Euler Parameters. A Brief Exposition
,”
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics
,
E.
Haug
, ed.,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
147
180
.
29.
Angeles
,
J.
,
1998
, “
The Application of Dual Algebra to Kinematic Analysis
,”
Computational Methods in Mechanical Systems
, Vol.
161
,
J.
Angeles
and
E.
Zakhariev
, eds.,
Springer-Verlag
,
Heidelberg
, pp.
3
31
.
30.
Pennestrì
,
E.
, and
Stefanelli
,
R.
,
2007
, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
,
18
(
3
), pp.
323
344
.10.1007/s11044-007-9088-9
31.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2016
, “
Manipulation of Motion Via Dual Entities
,”
Nonlinear Dyn.
,
85
(
1
), pp.
509
524
.10.1007/s11071-016-2703-7
32.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
,
2003
, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
,
33
(
2
), pp.
165
188
.10.1023/A:1026008414065
33.
Bauchau
,
O. A.
, and
Trainelli
,
L.
,
2003
, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
,
32
(
1
), pp.
71
92
.10.1023/A:1024265401576
34.
Hughes
,
T. J. R.
,
1987
,
The Finite Element Method
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
36.
Merlini
,
T.
, and
Morandini
,
M.
,
2004
, “
The Helicoidal Modeling in Computational Finite Elasticity. Part I: Variational Formulation
,”
Int. J. Solids Struct.
,
41
(
18–19
), pp.
5351
5381
.10.1016/j.ijsolstr.2004.02.024
37.
Sonneville
,
V.
,
Brüls
,
O.
, and
Bauchau
,
O. A.
,
2017
, “
Interpolation Schemes for Geometrically Exact Beams: A Motion Approach
,”
Int. J. Numer. Methods Eng.
,
112
(
9
), pp.
1129
1153
.10.1002/nme.5548
38.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2018
, “
On the Global Interpolation of Motion
,”
Comput. Methods Appl. Mech. Eng.
,
337
(
10
), pp.
352
386
.10.1016/j.cma.2018.04.002
39.
Bauchau
,
O. A.
, and
Sonneville
,
V.
,
2021
, “
Formulation of Shell Elements Based on the Motion Formalism
,”
Appl. Mech.
, 21, pp. 1009--1036.https://www.mdpi.com/2673-3161/2/4/59
40.
Malvern
,
L. E.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
,
Prentice Hall
,
Englewood Cliffs, NJ
.
41.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
42.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
43.
Hante
,
S.
, and
Arnold
,
M.
,
2021
, “
RATTLie: A Variational Lie Group Integration Scheme for Constrained Mechanical Systems
,”
J. Comput. Appl. Math.
,
387
, p.
112492
.10.1016/j.cam.2019.112492
44.
Wieloch
,
V.
, and
Arnold
,
M.
,
2021
, “
BDF Integrators for Constrained Mechanical Systems on Lie Groups
,”
J. Comput. Appl. Math.
,
387
, p.
112517
.10.1016/j.cam.2019.112517
45.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
, 4th ed.,
Dover
,
New York
.
46.
Hodges
,
D. H.
,
2003
, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
,
41
(
6
), pp.
1131
1137
.10.2514/2.2054
47.
Bauchau
,
O. A.
,
Li
,
L. H.
,
Masarati
,
P.
, and
Morandini
,
M.
,
2011
, “
Tensorial Deformation Measures for Flexible Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
0310021
.
48.
Bauchau
,
O. A.
, and
Han
,
S. L.
,
2013
, “
Flexible Joints in Structural and Multibody Dynamics
,”
Mech. Sci.
,
4
(
1
), pp.
65
77
.10.5194/ms-4-65-2013
49.
Masarati
,
P.
, and
Morandini
,
M.
,
2010
, “
Intrinsic Deformable Joints
,”
Multibody Syst. Dyn.
,
23
(
4
), pp.
361
386
.10.1007/s11044-010-9194-y
50.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041002
.10.1115/1.4026569
51.
Borri
,
M.
, and
Bottasso
,
C. L.
,
1994
, “
An Intrinsic Beam Model Based on a Helicoidal Approximation. Part I: Formulation
,”
Int. J. Numer. Methods Eng.
,
37
(
13
), pp.
2267
2289
.10.1002/nme.1620371308
52.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
(
1
), pp.
451
474
.10.1016/j.cma.2013.10.008
53.
Sonneville
,
V.
,
Scapolan
,
M.
,
Shan
,
M.
, and
Bauchau
,
O. A.
,
2021
, “
Modal Reduction Procedures for Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
51
(
4
), pp.
377
418
.10.1007/s11044-020-09770-w
You do not currently have access to this content.